//cargo run --example Linear_Matrix_ODE --release use arrayfire; use RayBNN_DiffEq; //Select CUDA and GPU Device 0 const BACK_END: arrayfire::Backend = arrayfire::Backend::CUDA; const DEVICE: i32 = 0; fn main() { arrayfire::set_backend(BACK_END); arrayfire::set_device(DEVICE); //Create A matrix from random normal numbers let A_dims = arrayfire::Dim4::new(&[1000,1000,1,1]); let A = arrayfire::randn::(A_dims)/100.0f64; // Set the Linear Matrix Differentail Equation // dy/dt = A*y let diffeq = |t: &arrayfire::Array, y: &arrayfire::Array| -> arrayfire::Array { arrayfire::matmul(&A, y, arrayfire::MatProp::NONE, arrayfire::MatProp::NONE) }; //Start at t=0 and end at t=50 //Step size of 0.001 //Relative error of 1E-9 //Absolute error of 1E-9 //Error Type compute the individual error of every element in y let options: RayBNN_DiffEq::ODE::ODE45::ODE45_Options = RayBNN_DiffEq::ODE::ODE45::ODE45_Options { tstart: 0.0f64, tend: 50.0f64, tstep: 0.001f64, rtol: 1.0E-9f64, atol: 1.0E-9f64, error_select: RayBNN_DiffEq::ODE::ODE45::error_type::INDIVIDUAL_ERROR }; let t_dims = arrayfire::Dim4::new(&[1,1,1,1]); let mut t = arrayfire::constant::(0.0,t_dims); let y0_dims = arrayfire::Dim4::new(&[1000,1,1,1]); let mut y = arrayfire::constant::(0.0,y0_dims); let mut dydt = arrayfire::constant::(0.0,y0_dims); //Initial Point of Differential Equation let y0 = arrayfire::randn::(y0_dims)/100.0f64; println!("Running"); arrayfire::sync(DEVICE); let starttime = std::time::Instant::now(); //Run Solver RayBNN_DiffEq::ODE::ODE45::solve( &y0 ,diffeq ,&options ,&mut t ,&mut y ,&mut dydt ); arrayfire::sync(DEVICE); let elapsedtime = starttime.elapsed(); arrayfire::sync(DEVICE); //let lasty = arrayfire::col(&y, y.dims()[1] as i64); //arrayfire::print_gen("lasty".to_string(), &lasty,Some(6)); //arrayfire::print_gen("t".to_string(), &t,Some(6)); println!("Computed {} Steps In: {:.6?}", y.dims()[1],elapsedtime); }