//cargo run --example Linear_ODE_f32 --release use arrayfire; use RayBNN_DiffEq; //Select CUDA and GPU Device 0 const BACK_END: arrayfire::Backend = arrayfire::Backend::CUDA; const DEVICE: i32 = 0; fn main() { arrayfire::set_backend(BACK_END); arrayfire::set_device(DEVICE); // Set the Linear Differentail Equation // dy/dt = sin(t) let diffeq = |t: &arrayfire::Array, y: &arrayfire::Array| -> arrayfire::Array { arrayfire::sin(&t) }; //Start at t=0 and end at t=1000 //Step size of 0.0001 //Relative error of 1E-4 //Absolute error of 1E-4 //Error Type compute the total error of every element in y let options: RayBNN_DiffEq::ODE::ODE45::ODE45_Options = RayBNN_DiffEq::ODE::ODE45::ODE45_Options { tstart: 0.0f32, tend: 1000.0f32, tstep: 0.0001f32, rtol: 1.0E-4f32, atol: 1.0E-4f32, error_select: RayBNN_DiffEq::ODE::ODE45::error_type::TOTAL_ERROR }; let t_dims = arrayfire::Dim4::new(&[1,1,1,1]); let mut t = arrayfire::constant::(0.0,t_dims); let y0_dims = arrayfire::Dim4::new(&[1,1,1,1]); let mut y = arrayfire::constant::(0.0,y0_dims); let mut dydt = arrayfire::constant::(0.0,y0_dims); //Initial Point of Differential Equation //Set y(t=0) = 1.0 let y0 = arrayfire::constant::(1.0,y0_dims); println!("Running"); arrayfire::sync(DEVICE); let starttime = std::time::Instant::now(); //Run Solver RayBNN_DiffEq::ODE::ODE45::solve( &y0 ,diffeq ,&options ,&mut t ,&mut y ,&mut dydt ); arrayfire::sync(DEVICE); let elapsedtime = starttime.elapsed(); arrayfire::sync(DEVICE); arrayfire::print_gen("y".to_string(), &y,Some(6)); arrayfire::print_gen("t".to_string(), &t,Some(6)); println!("Computed {} Steps In: {:.6?}", y.dims()[1],elapsedtime); //Error Analysis let actualy = 2.0f32 - arrayfire::cos(&t); let error = y - actualy; //arrayfire::print_gen("error".to_string(), &error,Some(6)); }