// Copyright 2013-2014 The acgmath Developers. For a full listing of the authors, // refer to the Cargo.toml file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #[macro_use] extern crate approx; #[macro_use] extern crate acgmath; pub mod matrix2 { use std::f64; use acgmath::*; const A: Matrix2 = Matrix2 { x: Vector2 { x: 1.0f64, y: 3.0f64 }, y: Vector2 { x: 2.0f64, y: 4.0f64 } }; const B: Matrix2 = Matrix2 { x: Vector2 { x: 2.0f64, y: 4.0f64 }, y: Vector2 { x: 3.0f64, y: 5.0f64 } }; const C: Matrix2 = Matrix2 { x: Vector2 { x: 2.0f64, y: 1.0f64 }, y: Vector2 { x: 1.0f64, y: 2.0f64 } }; const V: Vector2 = Vector2 { x: 1.0f64, y: 2.0f64 }; const F: f64 = 0.5; #[test] fn test_neg() { assert_eq!(-A, Matrix2::new(-1.0f64, -3.0f64, -2.0f64, -4.0f64)); } #[test] fn test_mul_scalar() { let result = Matrix2::new(0.5f64, 1.5f64, 1.0f64, 2.0f64) ; assert_eq!(A * F, result); assert_eq!(F * A, result); } #[test] fn test_div_scalar() { assert_eq!(A / F, Matrix2::new(2.0f64, 6.0f64, 4.0f64, 8.0f64)); assert_eq!(4.0f64 / C, Matrix2::new(2.0f64, 4.0f64, 4.0f64, 2.0f64)); } #[test] fn test_rem_scalar() { assert_eq!(A % 3.0f64, Matrix2::new(1.0f64, 0.0f64, 2.0f64, 1.0f64)); assert_eq!(3.0f64 % A, Matrix2::new(0.0f64, 0.0f64, 1.0f64, 3.0f64)); } #[test] fn test_add_matrix() { assert_eq!(A + B, Matrix2::new(3.0f64, 7.0f64, 5.0f64, 9.0f64)); } #[test] fn test_sub_matrix() { assert_eq!(A - B, Matrix2::new(-1.0f64, -1.0f64, -1.0f64, -1.0f64)); } #[test] fn test_mul_vector() { assert_eq!(A * V, Vector2::new(5.0f64, 11.0f64)); } #[test] fn test_mul_matrix() { assert_eq!(A * B, Matrix2::new(10.0f64, 22.0f64, 13.0f64, 29.0f64)); assert_eq!(A * B, &A * &B); } #[test] fn test_determinant() { assert_eq!(A.determinant(), -2.0f64) } #[test] fn test_trace() { assert_eq!(A.trace(), 5.0f64); } #[test] fn test_transpose() { assert_eq!(A.transpose(), Matrix2::::new(1.0f64, 2.0f64, 3.0f64, 4.0f64)); } #[test] fn test_transpose_self() { let mut mut_a = A; mut_a.transpose_self(); assert_eq!(mut_a, A.transpose()); } #[test] fn test_invert() { assert!(Matrix2::::identity().invert().unwrap().is_identity()); assert_eq!(A.invert().unwrap(), Matrix2::new(-2.0f64, 1.5f64, 1.0f64, -0.5f64)); assert!(Matrix2::new(0.0f64, 2.0f64, 0.0f64, 5.0f64).invert().is_none()); } #[test] fn test_predicates() { assert!(Matrix2::::identity().is_identity()); assert!(Matrix2::::identity().is_symmetric()); assert!(Matrix2::::identity().is_diagonal()); assert!(Matrix2::::identity().is_invertible()); assert!(!A.is_identity()); assert!(!A.is_symmetric()); assert!(!A.is_diagonal()); assert!(A.is_invertible()); assert!(!C.is_identity()); assert!(C.is_symmetric()); assert!(!C.is_diagonal()); assert!(C.is_invertible()); assert!(Matrix2::from_value(6.0f64).is_diagonal()); } #[test] fn test_from_angle() { // Rotate the vector (1, 0) by π/2 radians to the vector (0, 1) let rot1 = Matrix2::from_angle(Rad(0.5f64 * f64::consts::PI)); assert_ulps_eq!(rot1 * Vector2::unit_x(), &Vector2::unit_y()); // Rotate the vector (-1, 0) by -π/2 radians to the vector (0, 1) let rot2 = -rot1; assert_ulps_eq!(rot2 * -Vector2::unit_x(), &Vector2::unit_y()); // Rotate the vector (1, 1) by π radians to the vector (-1, -1) let rot3: Matrix2 = Matrix2::from_angle(Rad(f64::consts::PI)); assert_ulps_eq!(rot3 * Vector2::new(1.0, 1.0), &Vector2::new(-1.0, -1.0)); } } pub mod matrix3 { use acgmath::*; const A: Matrix3 = Matrix3 { x: Vector3 { x: 1.0f64, y: 4.0f64, z: 7.0f64 }, y: Vector3 { x: 2.0f64, y: 5.0f64, z: 8.0f64 }, z: Vector3 { x: 3.0f64, y: 6.0f64, z: 9.0f64 } }; const B: Matrix3 = Matrix3 { x: Vector3 { x: 2.0f64, y: 5.0f64, z: 8.0f64 }, y: Vector3 { x: 3.0f64, y: 6.0f64, z: 9.0f64 }, z: Vector3 { x: 4.0f64, y: 7.0f64, z: 10.0f64 } }; const C: Matrix3 = Matrix3 { x: Vector3 { x: 2.0f64, y: 4.0f64, z: 6.0f64 }, y: Vector3 { x: 0.0f64, y: 2.0f64, z: 4.0f64 }, z: Vector3 { x: 0.0f64, y: 0.0f64, z: 1.0f64 } }; const D: Matrix3 = Matrix3 { x: Vector3 { x: 3.0f64, y: 2.0f64, z: 1.0f64 }, y: Vector3 { x: 2.0f64, y: 3.0f64, z: 2.0f64 }, z: Vector3 { x: 1.0f64, y: 2.0f64, z: 3.0f64 } }; const V: Vector3 = Vector3 { x: 1.0f64, y: 2.0f64, z: 3.0f64 }; const F: f64 = 0.5; #[test] fn test_neg() { assert_eq!(-A, Matrix3::new(-1.0f64, -4.0f64, -7.0f64, -2.0f64, -5.0f64, -8.0f64, -3.0f64, -6.0f64, -9.0f64)); } #[test] fn test_mul_scalar() { let result = Matrix3::new(0.5f64, 2.0f64, 3.5f64, 1.0f64, 2.5f64, 4.0f64, 1.5f64, 3.0f64, 4.5f64); assert_eq!(A * F, result); assert_eq!(F * A, result); } #[test] fn test_div_scalar() { assert_eq!(A / F, Matrix3::new(2.0f64, 8.0f64, 14.0f64, 4.0f64, 10.0f64, 16.0f64, 6.0f64, 12.0f64, 18.0f64)); assert_eq!(6.0f64 / D, Matrix3::new(2.0f64, 3.0f64, 6.0f64, 3.0f64, 2.0f64, 3.0f64, 6.0f64, 3.0f64, 2.0f64)); } #[test] fn test_rem_scalar() { assert_eq!(A % 3.0f64, Matrix3::new(1.0f64, 1.0f64, 1.0f64, 2.0f64, 2.0f64, 2.0f64, 0.0f64, 0.0f64, 0.0f64)); assert_eq!(9.0f64 % A, Matrix3::new(0.0f64, 1.0f64, 2.0f64, 1.0f64, 4.0f64, 1.0f64, 0.0f64, 3.0f64, 0.0f64)); } #[test] fn test_add_matrix() { assert_eq!(A + B, Matrix3::new(3.0f64, 9.0f64, 15.0f64, 5.0f64, 11.0f64, 17.0f64, 7.0f64, 13.0f64, 19.0f64)); } #[test] fn test_sub_matrix() { assert_eq!(A - B, Matrix3::new(-1.0f64, -1.0f64, -1.0f64, -1.0f64, -1.0f64, -1.0f64, -1.0f64, -1.0f64, -1.0f64)); } #[test] fn test_mul_vector() { assert_eq!(A * V, Vector3::new(14.0f64, 32.0f64, 50.0f64)); } #[test] fn test_mul_matrix() { assert_eq!(A * B, Matrix3::new(36.0f64, 81.0f64, 126.0f64, 42.0f64, 96.0f64, 150.0f64, 48.0f64, 111.0f64, 174.0f64)); assert_eq!(A * B, &A * &B); } #[test] fn test_determinant() {; assert_eq!(A.determinant(), 0.0f64); } #[test] fn test_trace() { assert_eq!(A.trace(), 15.0f64); } #[test] fn test_transpose() { assert_eq!(A.transpose(), Matrix3::::new(1.0f64, 2.0f64, 3.0f64, 4.0f64, 5.0f64, 6.0f64, 7.0f64, 8.0f64, 9.0f64)); } #[test] fn test_transpose_self() { let mut mut_a = A; mut_a.transpose_self(); assert_eq!(mut_a, A.transpose()); } #[test] fn test_invert() { assert!(Matrix3::::identity().invert().unwrap().is_identity()); assert_eq!(A.invert(), None); assert_eq!(C.invert().unwrap(), Matrix3::new(0.5f64, -1.0f64, 1.0f64, 0.0f64, 0.5f64, -2.0f64, 0.0f64, 0.0f64, 1.0f64)); } #[test] fn test_predicates() { assert!(Matrix3::::identity().is_identity()); assert!(Matrix3::::identity().is_symmetric()); assert!(Matrix3::::identity().is_diagonal()); assert!(Matrix3::::identity().is_invertible()); assert!(!A.is_identity()); assert!(!A.is_symmetric()); assert!(!A.is_diagonal()); assert!(!A.is_invertible()); assert!(!D.is_identity()); assert!(D.is_symmetric()); assert!(!D.is_diagonal()); assert!(D.is_invertible()); assert!(Matrix3::from_value(6.0f64).is_diagonal()); } mod from_axis_x { use acgmath::*; fn check_from_axis_angle_x(pitch: Rad) { let found = Matrix3::from_angle_x(pitch); let expected = Matrix3::from(Euler { x: pitch, y: Rad(0.0), z: Rad(0.0) }); assert_relative_eq!(found, expected, epsilon = 0.001); } #[test] fn test_zero() { check_from_axis_angle_x(Rad(0.0)); } #[test] fn test_pos_1() { check_from_axis_angle_x(Rad(1.0)); } #[test] fn test_neg_1() { check_from_axis_angle_x(Rad(-1.0)); } } mod from_axis_y { use acgmath::*; fn check_from_axis_angle_y(yaw: Rad) { let found = Matrix3::from_angle_y(yaw); let expected = Matrix3::from(Euler { x: Rad(0.0), y: yaw, z: Rad(0.0) }); assert_relative_eq!(found, expected, epsilon = 0.001); } #[test] fn test_zero() { check_from_axis_angle_y(Rad(0.0)); } #[test] fn test_pos_1() { check_from_axis_angle_y(Rad(1.0)); } #[test] fn test_neg_1() { check_from_axis_angle_y(Rad(-1.0)); } } mod from_axis_z { use acgmath::*; fn check_from_axis_angle_z(roll: Rad) { let found = Matrix3::from_angle_z(roll); let expected = Matrix3::from(Euler { x: Rad(0.0), y: Rad(0.0), z: roll }); assert_relative_eq!(found, expected, epsilon = 0.001); } #[test] fn test_zero() { check_from_axis_angle_z(Rad(0.0)); } #[test] fn test_pos_1() { check_from_axis_angle_z(Rad(1.0)); } #[test] fn test_neg_1() { check_from_axis_angle_z(Rad(-1.0)); } } mod from_axis_angle { mod axis_x { use acgmath::*; fn check_from_axis_angle_x(pitch: Rad) { let found = Matrix3::from_axis_angle(Vector3::unit_x(), pitch); let expected = Matrix3::from(Euler { x: pitch, y: Rad(0.0), z: Rad(0.0) }); assert_relative_eq!(found, expected, epsilon = 0.001); } #[test] fn test_zero() { check_from_axis_angle_x(Rad(0.0)); } #[test] fn test_pos_1() { check_from_axis_angle_x(Rad(1.0)); } #[test] fn test_neg_1() { check_from_axis_angle_x(Rad(-1.0)); } } mod axis_y { use acgmath::*; fn check_from_axis_angle_y(yaw: Rad) { let found = Matrix3::from_axis_angle(Vector3::unit_y(), yaw); let expected = Matrix3::from(Euler { x: Rad(0.0), y: yaw, z: Rad(0.0) }); assert_relative_eq!(found, expected, epsilon = 0.001); } #[test] fn test_zero() { check_from_axis_angle_y(Rad(0.0)); } #[test] fn test_pos_1() { check_from_axis_angle_y(Rad(1.0)); } #[test] fn test_neg_1() { check_from_axis_angle_y(Rad(-1.0)); } } mod axis_z { use acgmath::*; fn check_from_axis_angle_z(roll: Rad) { let found = Matrix3::from_axis_angle(Vector3::unit_z(), roll); let expected = Matrix3::from(Euler { x: Rad(0.0), y: Rad(0.0), z: roll }); assert_relative_eq!(found, expected, epsilon = 0.001); } #[test] fn test_zero() { check_from_axis_angle_z(Rad(0.0)); } #[test] fn test_pos_1() { check_from_axis_angle_z(Rad(1.0)); } #[test] fn test_neg_1() { check_from_axis_angle_z(Rad(-1.0)); } } } mod rotate_from_euler { use acgmath::*; #[test] fn test_x() { let vec = vec3(0.0, 0.0, 1.0); let rot = Matrix3::from(Euler::new(Deg(90.0), Deg(0.0), Deg(0.0))); assert_ulps_eq!(vec3(0.0, -1.0, 0.0), rot * vec); let rot = Matrix3::from(Euler::new(Deg(-90.0), Deg(0.0), Deg(0.0))); assert_ulps_eq!(vec3(0.0, 1.0, 0.0), rot * vec); } #[test] fn test_y() { let vec = vec3(0.0, 0.0, 1.0); let rot = Matrix3::from(Euler::new(Deg(0.0), Deg(90.0), Deg(0.0))); assert_ulps_eq!(vec3(1.0, 0.0, 0.0), rot * vec); let rot = Matrix3::from(Euler::new(Deg(0.0), Deg(-90.0), Deg(0.0))); assert_ulps_eq!(vec3(-1.0, 0.0, 0.0), rot * vec); } #[test] fn test_z() { let vec = vec3(1.0, 0.0, 0.0); let rot = Matrix3::from(Euler::new(Deg(0.0), Deg(0.0), Deg(90.0))); assert_ulps_eq!(vec3(0.0, 1.0, 0.0), rot * vec); let rot = Matrix3::from(Euler::new(Deg(0.0), Deg(0.0), Deg(-90.0))); assert_ulps_eq!(vec3(0.0, -1.0, 0.0), rot * vec); } // tests that the Y rotation is done after the X #[test] fn test_x_then_y() { let vec = vec3(0.0, 1.0, 0.0); let rot = Matrix3::from(Euler::new(Deg(90.0), Deg(90.0), Deg(0.0))); assert_ulps_eq!(vec3(0.0, 0.0, 1.0), rot * vec); } // tests that the Z rotation is done after the Y #[test] fn test_y_then_z() { let vec = vec3(0.0, 0.0, 1.0); let rot = Matrix3::from(Euler::new(Deg(0.0), Deg(90.0), Deg(90.0))); assert_ulps_eq!(vec3(1.0, 0.0, 0.0), rot * vec); } } mod rotate_from_axis_angle { use acgmath::*; #[test] fn test_x() { let vec = vec3(0.0, 0.0, 1.0); let rot = Matrix3::from_angle_x(Deg(90.0)); println!("x mat: {:?}", rot); assert_ulps_eq!(vec3(0.0, -1.0, 0.0), rot * vec); } #[test] fn test_y() { let vec = vec3(0.0, 0.0, 1.0); let rot = Matrix3::from_angle_y(Deg(90.0)); assert_ulps_eq!(vec3(1.0, 0.0, 0.0), rot * vec); } #[test] fn test_z() { let vec = vec3(1.0, 0.0, 0.0); let rot = Matrix3::from_angle_z(Deg(90.0)); assert_ulps_eq!(vec3(0.0, 1.0, 0.0), rot * vec); } #[test] fn test_xy() { let vec = vec3(0.0, 0.0, 1.0); let rot = Matrix3::from_axis_angle(vec3(1.0, 1.0, 0.0).normalize(), Deg(90.0)); assert_ulps_eq!(vec3(2.0f32.sqrt() / 2.0, -2.0f32.sqrt() / 2.0, 0.0), rot * vec); } #[test] fn test_yz() { let vec = vec3(1.0, 0.0, 0.0); let rot = Matrix3::from_axis_angle(vec3(0.0, 1.0, 1.0).normalize(), Deg(-90.0)); assert_ulps_eq!(vec3(0.0, -2.0f32.sqrt() / 2.0, 2.0f32.sqrt() / 2.0), rot * vec); } #[test] fn test_xz() { let vec = vec3(0.0, 1.0, 0.0); let rot = Matrix3::from_axis_angle(vec3(1.0, 0.0, 1.0).normalize(), Deg(90.0)); assert_ulps_eq!(vec3(-2.0f32.sqrt() / 2.0, 0.0, 2.0f32.sqrt() / 2.0), rot * vec); } } } pub mod matrix4 { use acgmath::*; const A: Matrix4 = Matrix4 { x: Vector4 { x: 1.0f64, y: 5.0f64, z: 9.0f64, w: 13.0f64 }, y: Vector4 { x: 2.0f64, y: 6.0f64, z: 10.0f64, w: 14.0f64 }, z: Vector4 { x: 3.0f64, y: 7.0f64, z: 11.0f64, w: 15.0f64 }, w: Vector4 { x: 4.0f64, y: 8.0f64, z: 12.0f64, w: 16.0f64 } }; const B: Matrix4 = Matrix4 { x: Vector4 { x: 2.0f64, y: 6.0f64, z: 10.0f64, w: 14.0f64 }, y: Vector4 { x: 3.0f64, y: 7.0f64, z: 11.0f64, w: 15.0f64 }, z: Vector4 { x: 4.0f64, y: 8.0f64, z: 12.0f64, w: 16.0f64 }, w: Vector4 { x: 5.0f64, y: 9.0f64, z: 13.0f64, w: 17.0f64 } }; const C: Matrix4 = Matrix4 { x: Vector4 { x: 3.0f64, y: 2.0f64, z: 1.0f64, w: 1.0f64 }, y: Vector4 { x: 2.0f64, y: 3.0f64, z: 2.0f64, w: 2.0f64 }, z: Vector4 { x: 1.0f64, y: 2.0f64, z: 3.0f64, w: 3.0f64 }, w: Vector4 { x: 0.0f64, y: 1.0f64, z: 1.0f64, w: 0.0f64 } }; const D: Matrix4 = Matrix4 { x: Vector4 { x: 4.0f64, y: 3.0f64, z: 2.0f64, w: 1.0f64 }, y: Vector4 { x: 3.0f64, y: 4.0f64, z: 3.0f64, w: 2.0f64 }, z: Vector4 { x: 2.0f64, y: 3.0f64, z: 4.0f64, w: 3.0f64 }, w: Vector4 { x: 1.0f64, y: 2.0f64, z: 3.0f64, w: 4.0f64 } }; const V: Vector4 = Vector4 { x: 1.0f64, y: 2.0f64, z: 3.0f64, w: 4.0f64 }; const F: f64 = 0.5; #[test] fn test_neg() { assert_eq!(-A, Matrix4::new(-1.0f64, -5.0f64, -9.0f64, -13.0f64, -2.0f64, -6.0f64, -10.0f64, -14.0f64, -3.0f64, -7.0f64, -11.0f64, -15.0f64, -4.0f64, -8.0f64, -12.0f64, -16.0f64)); } #[test] fn test_mul_scalar() { let result = Matrix4::new(0.5f64, 2.5f64, 4.5f64, 6.5f64, 1.0f64, 3.0f64, 5.0f64, 7.0f64, 1.5f64, 3.5f64, 5.5f64, 7.5f64, 2.0f64, 4.0f64, 6.0f64, 8.0f64); assert_eq!(A * F, result); assert_eq!(F * A, result); } #[test] fn test_div_scalar() { assert_eq!(A / F, Matrix4::new(2.0f64, 10.0f64, 18.0f64, 26.0f64, 4.0f64, 12.0f64, 20.0f64, 28.0f64, 6.0f64, 14.0f64, 22.0f64, 30.0f64, 8.0f64, 16.0f64, 24.0f64, 32.0f64)); assert_eq!(12.0f64 / D, Matrix4::new( 3.0f64, 4.0f64, 6.0f64, 12.0f64, 4.0f64, 3.0f64, 4.0f64, 6.0f64, 6.0f64, 4.0f64, 3.0f64, 4.0f64, 12.0f64, 6.0f64, 4.0f64, 3.0f64)); } #[test] fn test_rem_scalar() { assert_eq!(A % 4.0f64, Matrix4::new(1.0f64, 1.0f64, 1.0f64, 1.0f64, 2.0f64, 2.0f64, 2.0f64, 2.0f64, 3.0f64, 3.0f64, 3.0f64, 3.0f64, 0.0f64, 0.0f64, 0.0f64, 0.0f64)); assert_eq!(16.0f64 % A, Matrix4::new(0.0f64, 1.0f64, 7.0f64, 3.0f64, 0.0f64, 4.0f64, 6.0f64, 2.0f64, 1.0f64, 2.0f64, 5.0f64, 1.0f64, 0.0f64, 0.0f64, 4.0f64, 0.0f64)); } #[test] fn test_add_matrix() { assert_eq!(A + B, Matrix4::new(3.0f64, 11.0f64, 19.0f64, 27.0f64, 5.0f64, 13.0f64, 21.0f64, 29.0f64, 7.0f64, 15.0f64, 23.0f64, 31.0f64, 9.0f64, 17.0f64, 25.0f64, 33.0f64)); } #[test] fn test_sub_matrix() { assert_eq!(A - B, Matrix4::new(-1.0f64, -1.0f64, -1.0f64, -1.0f64, -1.0f64, -1.0f64, -1.0f64, -1.0f64, -1.0f64, -1.0f64, -1.0f64, -1.0f64, -1.0f64, -1.0f64, -1.0f64, -1.0f64)); } #[test] fn test_mul_vector() { assert_eq!(A * V, Vector4::new(30.0f64, 70.0f64, 110.0f64, 150.0f64)); } #[test] fn test_mul_matrix() { assert_eq!(A * B, Matrix4::new(100.0f64, 228.0f64, 356.0f64, 484.0f64, 110.0f64, 254.0f64, 398.0f64, 542.0f64, 120.0f64, 280.0f64, 440.0f64, 600.0f64, 130.0f64, 306.0f64, 482.0f64, 658.0f64)); assert_eq!(A * B, &A * &B); } #[test] fn test_determinant() { assert_eq!(A.determinant(), 0.0f64); } #[test] fn test_trace() { assert_eq!(A.trace(), 34.0f64); } #[test] fn test_transpose() { assert_eq!(A.transpose(), Matrix4::::new( 1.0f64, 2.0f64, 3.0f64, 4.0f64, 5.0f64, 6.0f64, 7.0f64, 8.0f64, 9.0f64, 10.0f64, 11.0f64, 12.0f64, 13.0f64, 14.0f64, 15.0f64, 16.0f64)); } #[test] fn test_transpose_self() { let mut mut_a = A; mut_a.transpose_self(); assert_eq!(mut_a, A.transpose()); } #[test] fn test_invert() { assert!(Matrix4::::identity().invert().unwrap().is_identity()); assert_ulps_eq!(&C.invert().unwrap(), &( Matrix4::new( 5.0f64, -4.0f64, 1.0f64, 0.0f64, -4.0f64, 8.0f64, -4.0f64, 0.0f64, 4.0f64, -8.0f64, 4.0f64, 8.0f64, -3.0f64, 4.0f64, 1.0f64, -8.0f64) * 0.125f64)); let mat_c = Matrix4::new(-0.131917f64, -0.76871f64, 0.625846f64, 0.0f64, -0., 0.631364f64, 0.775487f64, 0.0f64, -0.991261f64, 0.1023f64, -0.083287f64, 0.0f64, 0., -1.262728f64, -1.550973f64, 1.0f64); assert!((mat_c.invert().unwrap() * mat_c).is_identity()); let mat_d = Matrix4::new( 0.065455f64, -0.720002f64, 0.690879f64, 0.0f64, -0., 0.692364f64, 0.721549f64, 0.0f64, -0.997856f64, -0.047229f64, 0.045318f64, 0.0f64, 0., -1.384727f64, -1.443098f64, 1.0f64); assert!((mat_d.invert().unwrap() * mat_d).is_identity()); let mat_e = Matrix4::new( 0.409936f64, 0.683812f64, -0.603617f64, 0.0f64, 0., 0.661778f64, 0.7497f64, 0.0f64, 0.912114f64, -0.307329f64, 0.271286f64, 0.0f64, -0., -1.323555f64, -1.499401f64, 1.0f64); assert!((mat_e.invert().unwrap() * mat_e).is_identity()); let mat_f = Matrix4::new(-0.160691f64, -0.772608f64, 0.614211f64, 0.0f64, -0., 0.622298f64, 0.78278f64, 0.0f64, -0.987005f64, 0.125786f64, -0.099998f64, 0.0f64, 0., -1.244597f64, -1.565561f64, 1.0f64); assert!((mat_f.invert().unwrap() * mat_f).is_identity()); } #[test] fn test_predicates() { assert!(Matrix4::::identity().is_identity()); assert!(Matrix4::::identity().is_symmetric()); assert!(Matrix4::::identity().is_diagonal()); assert!(Matrix4::::identity().is_invertible()); assert!(!A.is_identity()); assert!(!A.is_symmetric()); assert!(!A.is_diagonal()); assert!(!A.is_invertible()); assert!(!D.is_identity()); assert!(D.is_symmetric()); assert!(!D.is_diagonal()); assert!(D.is_invertible()); assert!(Matrix4::from_value(6.0f64).is_diagonal()); } #[test] fn test_from_translation() { let mat = Matrix4::from_translation(Vector3::new(1.0f64, 2.0f64, 3.0f64)); let vertex = Vector4::new(0.0f64, 0.0f64, 0.0f64, 1.0f64); let res = mat * vertex; assert_eq!(res, Vector4::new(1., 2., 3., 1.)); } #[test] fn test_cast() { assert_ulps_eq!(Matrix2::new(0.2f64, 1.5, 4.7, 2.3).cast(), Matrix2::new(0.2f32, 1.5, 4.7, 2.3)); assert_ulps_eq!(Matrix3::new( 0.2f64, 1.5, 4.7, 2.3, 5.7, 2.1, 4.6, 5.2, 6.6, ).cast(), Matrix3::new( 0.2f32, 1.5, 4.7, 2.3, 5.7, 2.1, 4.6, 5.2, 6.6, )); assert_ulps_eq!(Matrix4::new( 0.2f64, 1.5, 4.7, 2.5, 2.3, 5.7, 2.1, 1.1, 4.6, 5.2, 6.6, 0.2, 3.2, 1.8, 0.4, 2.9, ).cast(), Matrix4::new( 0.2f32, 1.5, 4.7, 2.5, 2.3, 5.7, 2.1, 1.1, 4.6, 5.2, 6.6, 0.2, 3.2, 1.8, 0.4, 2.9, )); } mod from { use acgmath::*; #[test] fn test_quaternion() { let quaternion = Quaternion::new(2f32, 3f32, 4f32, 5f32); let matrix_short = Matrix4::from(quaternion); let matrix_long = Matrix3::from(quaternion); let matrix_long = Matrix4::from(matrix_long); assert_ulps_eq!(matrix_short, matrix_long); } } }