// Copyright 2013-2014 The acgmath Developers. For a full listing of the authors, // refer to the Cargo.toml file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0f32 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0f32 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #[macro_use] extern crate approx; #[macro_use] extern crate acgmath; use acgmath::*; use std::f32; #[test] fn test_constructor() { assert_eq!(vec2(1f32, 2f32), Vector2::new(1f32, 2f32)); assert_eq!(vec3(1f32, 2f32, 3f32), Vector3::new(1f32, 2f32, 3f32)); assert_eq!(vec4(1f32, 2f32, 3f32, 4f32), Vector4::new(1f32, 2f32, 3f32, 4f32)); } #[test] fn test_from_value() { assert_eq!(Vector2::from_value(102f32), Vector2::new(102f32, 102f32)); assert_eq!(Vector3::from_value(22f32), Vector3::new(22f32, 22f32, 22f32)); assert_eq!(Vector4::from_value(76.5f32), Vector4::new(76.5f32, 76.5f32, 76.5f32, 76.5f32)); } macro_rules! impl_test_add { ($VectorN:ident { $($field:ident),+ }, $s:expr, $v:expr) => ( // vector + vector ops assert_eq!($v + $v, $VectorN::new($($v.$field + $v.$field),+)); assert_eq!(&$v + &$v, $v + $v); assert_eq!(&$v + $v, $v + $v); assert_eq!($v + &$v, $v + $v); ) } macro_rules! impl_test_sub { ($VectorN:ident { $($field:ident),+ }, $s:expr, $v:expr) => ( // vector - vector ops assert_eq!($v - $v, $VectorN::new($($v.$field - $v.$field),+)); assert_eq!(&$v - &$v, $v - $v); assert_eq!(&$v - $v, $v - $v); assert_eq!($v - &$v, $v - $v); ) } macro_rules! impl_test_mul { ($VectorN:ident { $($field:ident),+ }, $s:expr, $v:expr) => ( // vector * scalar ops assert_eq!($v * $s, $VectorN::new($($v.$field * $s),+)); assert_eq!($s * $v, $VectorN::new($($s * $v.$field),+)); assert_eq!(&$v * $s, $v * $s); assert_eq!($s * &$v, $s * $v); // commutativity assert_eq!($v * $s, $s * $v); ) } macro_rules! impl_test_div { ($VectorN:ident { $($field:ident),+ }, $s:expr, $v:expr) => ( // vector / scalar ops assert_eq!($v / $s, $VectorN::new($($v.$field / $s),+)); assert_eq!($s / $v, $VectorN::new($($s / $v.$field),+)); assert_eq!(&$v / $s, $v / $s); assert_eq!($s / &$v, $s / $v); ) } macro_rules! impl_test_rem { ($VectorN:ident { $($field:ident),+ }, $s:expr, $v:expr) => ( // vector % scalar ops assert_eq!($v % $s, $VectorN::new($($v.$field % $s),+)); assert_eq!($s % $v, $VectorN::new($($s % $v.$field),+)); assert_eq!(&$v % $s, $v % $s); assert_eq!($s % &$v, $s % $v); ) } #[test] fn test_add() { impl_test_add!(Vector4 { x, y, z, w }, 2.0f32, vec4(2.0f32, 4.0f32, 6.0f32, 8.0f32)); } #[test] fn test_sub() { impl_test_sub!(Vector4 { x, y, z, w }, 2.0f32, vec4(2.0f32, 4.0f32, 6.0f32, 8.0f32)); impl_test_sub!(Vector3 { x, y, z }, 2.0f32, vec3(2.0f32, 4.0f32, 6.0f32)); impl_test_sub!(Vector2 { x, y }, 2.0f32, vec2(2.0f32, 4.0f32)); } #[test] fn test_mul() { impl_test_mul!(Vector4 { x, y, z, w }, 2.0f32, vec4(2.0f32, 4.0f32, 6.0f32, 8.0f32)); impl_test_mul!(Vector3 { x, y, z }, 2.0f32, vec3(2.0f32, 4.0f32, 6.0f32)); impl_test_mul!(Vector2 { x, y }, 2.0f32, vec2(2.0f32, 4.0f32)); } #[test] fn test_div() { impl_test_div!(Vector4 { x, y, z, w }, 2.0f32, vec4(2.0f32, 4.0f32, 6.0f32, 8.0f32)); impl_test_div!(Vector3 { x, y, z }, 2.0f32, vec3(2.0f32, 4.0f32, 6.0f32)); impl_test_div!(Vector2 { x, y }, 2.0f32, vec2(2.0f32, 4.0f32)); } #[test] fn test_rem() { impl_test_rem!(Vector4 { x, y, z, w }, 2.0f32, vec4(2.0f32, 4.0f32, 6.0f32, 8.0f32)); impl_test_rem!(Vector3 { x, y, z }, 2.0f32, vec3(2.0f32, 4.0f32, 6.0f32)); impl_test_rem!(Vector2 { x, y }, 2.0f32, vec2(2.0f32, 4.0f32)); } #[test] fn test_dot() { assert_eq!(Vector2::new(1.0f32, 2.0f32).dot(Vector2::new(3.0f32, 4.0f32)), 11.0f32); assert_eq!(Vector3::new(1.0f32, 2.0f32, 3.0f32).dot(Vector3::new(4.0f32, 5.0f32, 6.0f32)), 32.0f32); assert_eq!(Vector4::new(1.0f32, 2.0f32, 3.0f32, 4.0f32).dot(Vector4::new(5.0f32, 6.0f32, 7.0f32, 8.0f32)), 70.0f32); } #[test] fn test_sum() { assert_eq!(Vector2::new(1f32, 2f32).sum(), 3f32); assert_eq!(Vector3::new(1f32, 2f32, 3f32).sum(), 6f32); assert_eq!(Vector4::new(1f32, 2f32, 3f32, 4f32).sum(), 10f32); assert_eq!(Vector2::new(3.0f32, 4.0f32).sum(), 7.0f32); assert_eq!(Vector3::new(4.0f32, 5.0f32, 6.0f32).sum(), 15.0f32); assert_eq!(Vector4::new(5.0f32, 6.0f32, 7.0f32, 8.0f32).sum(), 26.0f32); } #[test] fn test_product() { assert_eq!(Vector2::new(1f32, 2f32).product(), 2f32); assert_eq!(Vector3::new(1f32, 2f32, 3f32).product(), 6f32); assert_eq!(Vector4::new(1f32, 2f32, 3f32, 4f32).product(), 24f32); assert_eq!(Vector2::new(3.0f32, 4.0f32).product(), 12.0f32); assert_eq!(Vector3::new(4.0f32, 5.0f32, 6.0f32).product(), 120.0f32); assert_eq!(Vector4::new(5.0f32, 6.0f32, 7.0f32, 8.0f32).product(), 1680.0f32); } #[test] fn test_min() { assert_eq!(Vector2::new(1f32, 2f32).min(), 1f32); assert_eq!(Vector3::new(1f32, 2f32, 3f32).min(), 1f32); assert_eq!(Vector4::new(1f32, 2f32, 3f32, 4f32).min(), 1f32); assert_eq!(Vector2::new(3.0f32, 4.0f32).min(), 3.0f32); assert_eq!(Vector3::new(4.0f32, 5.0f32, 6.0f32).min(), 4.0f32); assert_eq!(Vector4::new(5.0f32, 6.0f32, 7.0f32, 8.0f32).min(), 5.0f32); } #[test] fn test_max() { assert_eq!(Vector2::new(1f32, 2f32).max(), 2f32); assert_eq!(Vector3::new(1f32, 2f32, 3f32).max(), 3f32); assert_eq!(Vector4::new(1f32, 2f32, 3f32, 4f32).max(), 4f32); assert_eq!(Vector2::new(3.0f32, 4.0f32).max(), 4.0f32); assert_eq!(Vector3::new(4.0f32, 5.0f32, 6.0f32).max(), 6.0f32); assert_eq!(Vector4::new(5.0f32, 6.0f32, 7.0f32, 8.0f32).max(), 8.0f32); } #[test] fn test_cross() { let a = Vector3::new(1f32, 2f32, 3f32); let b = Vector3::new(4f32, 5f32, 6f32); let r = Vector3::new(-3f32, 6f32, -3f32); assert_eq!(a.cross(b), r); } #[test] fn test_is_perpendicular() { assert!(Vector2::new(1.0f32, 0.0f32).is_perpendicular(Vector2::new(0.0f32, 1.0f32))); assert!(Vector3::new(0.0f32, 1.0f32, 0.0f32).is_perpendicular(Vector3::new(0.0f32, 0.0f32, 1.0f32))); assert!(Vector4::new(1.0f32, 0.0f32, 0.0f32, 0.0f32).is_perpendicular(Vector4::new(0.0f32, 0.0f32, 0.0f32, 1.0f32))); } #[cfg(test)] mod test_magnitude { use acgmath::*; #[test] fn test_vector2(){ let (a, a_res) = (Vector2::new(3.0f32, 4.0f32), 5.0f32); // (3, 4, 5) Pythagorean triple let (b, b_res) = (Vector2::new(5.0f32, 12.0f32), 13.0f32); // (5, 12, 13) Pythagorean triple assert_eq!(a.magnitude2(), a_res * a_res); assert_eq!(b.magnitude2(), b_res * b_res); assert_eq!(a.magnitude(), a_res); assert_eq!(b.magnitude(), b_res); } #[test] fn test_vector3(){ let (a, a_res) = (Vector3::new(2.0f32, 3.0f32, 6.0f32), 7.0f32); // (2, 3, 6, 7) Pythagorean quadruple let (b, b_res) = (Vector3::new(1.0f32, 4.0f32, 8.0f32), 9.0f32); // (1, 4, 8, 9) Pythagorean quadruple assert_eq!(a.magnitude2(), a_res * a_res); assert_eq!(b.magnitude2(), b_res * b_res); assert_eq!(a.magnitude(), a_res); assert_eq!(b.magnitude(), b_res); } #[test] fn test_vector4(){ let (a, a_res) = (Vector4::new(1.0f32, 2.0f32, 4.0f32, 10.0f32), 11.0f32); // (1, 2, 4, 10, 11) Pythagorean quintuple let (b, b_res) = (Vector4::new(1.0f32, 2.0f32, 8.0f32, 10.0f32), 13.0f32); // (1, 2, 8, 10, 13) Pythagorean quintuple assert_eq!(a.magnitude2(), a_res * a_res); assert_eq!(b.magnitude2(), b_res * b_res); assert_eq!(a.magnitude(), a_res); assert_eq!(b.magnitude(), b_res); #[cfg(feature = "use_simd")] { let a = Vector4::new(1f32, 4f32, 9f32, 16f32); assert_ulps_eq!(a.sqrt_element_wide(), Vector4::new(1f32, 2f32, 3f32, 4f32)); assert_relative_eq!(a.sqrt_element_wide().recip_element_wide(), Vector4::new(1f32, 1f32/2f32, 1f32/3f32, 1f32/4f32), max_relative = 0.005f32); assert_relative_eq!(a.rsqrt_element_wide(), Vector4::new(1f32, 1f32/2f32, 1f32/3f32, 1f32/4f32), max_relative= 0.005f32); } } } #[test] fn test_angle() { assert_ulps_eq!(Vector2::new(1.0f32, 0.0f32).angle(Vector2::new(0.0f32, 1.0f32)), &Rad(f32::consts::FRAC_PI_2)); assert_ulps_eq!(Vector2::new(10.0f32, 0.0f32).angle(Vector2::new(0.0f32, 5.0f32)), &Rad(f32::consts::FRAC_PI_2)); assert_ulps_eq!(Vector2::new(-1.0f32, 0.0f32).angle(Vector2::new(0.0f32, 1.0f32)), &-Rad(f32::consts::FRAC_PI_2)); assert_ulps_eq!(Vector3::new(1.0f32, 0.0f32, 1.0f32).angle(Vector3::new(1.0f32, 1.0f32, 0.0f32)), &Rad(f32::consts::FRAC_PI_3)); assert_ulps_eq!(Vector3::new(10.0f32, 0.0f32, 10.0f32).angle(Vector3::new(5.0f32, 5.0f32, 0.0f32)), &Rad(f32::consts::FRAC_PI_3)); assert_ulps_eq!(Vector3::new(-1.0f32, 0.0f32, -1.0f32).angle(Vector3::new(1.0f32, -1.0f32, 0.0f32)), &Rad(2.0f32 * f32::consts::FRAC_PI_3)); assert_ulps_eq!(Vector4::new(1.0f32, 0.0f32, 1.0f32, 0.0f32).angle(Vector4::new(0.0f32, 1.0f32, 0.0f32, 1.0f32)), &Rad(f32::consts::FRAC_PI_2)); assert_ulps_eq!(Vector4::new(10.0f32, 0.0f32, 10.0f32, 0.0f32).angle(Vector4::new(0.0f32, 5.0f32, 0.0f32, 5.0f32)), &Rad(f32::consts::FRAC_PI_2)); assert_ulps_eq!(Vector4::new(-1.0f32, 0.0f32, -1.0f32, 0.0f32).angle(Vector4::new(0.0f32, 1.0f32, 0.0f32, 1.0f32)), &Rad(f32::consts::FRAC_PI_2)); } #[test] fn test_normalize() { // TODO: test normalize_to, normalize_sel.0f32, and normalize_self_to assert_ulps_eq!(Vector2::new(3.0f32, 4.0f32).normalize(), &Vector2::new(3.0f32/5.0f32, 4.0f32/5.0f32)); assert_ulps_eq!(Vector3::new(2.0f32, 3.0f32, 6.0f32).normalize(), &Vector3::new(2.0f32/7.0f32, 3.0f32/7.0f32, 6.0f32/7.0f32)); assert_ulps_eq!(Vector4::new(1.0f32, 2.0f32, 4.0f32, 10.0f32).normalize(), &Vector4::new(1.0f32/11.0f32, 2.0f32/11.0f32, 4.0f32/11.0f32, 10.0f32/11.0f32)); } #[test] fn test_cast() { assert_ulps_eq!(Vector2::new(0.9f32, 1.5).cast(), Vector2::new(0.9f32, 1.5)); assert_ulps_eq!(Vector3::new(1.0f32, 2.4, -3.13).cast(), Vector3::new(1.0f32, 2.4, -3.13)); assert_ulps_eq!(Vector4::new(13.5f32, -4.6, -8.3, 2.41).cast(), Vector4::new(13.5f32, -4.6, -8.3, 2.41)); }