/** * OpenAL cross platform audio library * Copyright (C) 1999-2007 by authors. * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * Or go to http://www.gnu.org/copyleft/lgpl.html */ #include "config.h" #include "version.h" #ifdef _WIN32 #define WIN32_LEAN_AND_MEAN #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "AL/al.h" #include "AL/alc.h" #include "AL/alext.h" #include "AL/efx.h" #include "al/auxeffectslot.h" #include "al/buffer.h" #include "al/effect.h" #include "al/filter.h" #include "al/listener.h" #include "al/source.h" #include "albit.h" #include "albyte.h" #include "alconfig.h" #include "almalloc.h" #include "alnumeric.h" #include "aloptional.h" #include "alspan.h" #include "alstring.h" #include "alu.h" #include "atomic.h" #include "context.h" #include "core/ambidefs.h" #include "core/bformatdec.h" #include "core/bs2b.h" #include "core/context.h" #include "core/cpu_caps.h" #include "core/devformat.h" #include "core/device.h" #include "core/effectslot.h" #include "core/except.h" #include "core/helpers.h" #include "core/mastering.h" #include "core/mixer/hrtfdefs.h" #include "core/fpu_ctrl.h" #include "core/front_stablizer.h" #include "core/logging.h" #include "core/uhjfilter.h" #include "core/voice.h" #include "core/voice_change.h" #include "device.h" #include "effects/base.h" #include "inprogext.h" #include "intrusive_ptr.h" #include "opthelpers.h" #include "strutils.h" #include "threads.h" #include "vector.h" #include "backends/base.h" #include "backends/null.h" #include "backends/loopback.h" #ifdef HAVE_PIPEWIRE #include "backends/pipewire.h" #endif #ifdef HAVE_JACK #include "backends/jack.h" #endif #ifdef HAVE_PULSEAUDIO #include "backends/pulseaudio.h" #endif #ifdef HAVE_ALSA #include "backends/alsa.h" #endif #ifdef HAVE_WASAPI #include "backends/wasapi.h" #endif #ifdef HAVE_COREAUDIO #include "backends/coreaudio.h" #endif #ifdef HAVE_OPENSL #include "backends/opensl.h" #endif #ifdef HAVE_OBOE #include "backends/oboe.h" #endif #ifdef HAVE_SOLARIS #include "backends/solaris.h" #endif #ifdef HAVE_SNDIO #include "backends/sndio.h" #endif #ifdef HAVE_OSS #include "backends/oss.h" #endif #ifdef HAVE_DSOUND #include "backends/dsound.h" #endif #ifdef HAVE_WINMM #include "backends/winmm.h" #endif #ifdef HAVE_PORTAUDIO #include "backends/portaudio.h" #endif #ifdef HAVE_SDL2 #include "backends/sdl2.h" #endif #ifdef HAVE_WAVE #include "backends/wave.h" #endif #ifdef ALSOFT_EAX #include "al/eax/globals.h" #include "al/eax/x_ram.h" #endif // ALSOFT_EAX FILE *gLogFile{stderr}; #ifdef _DEBUG LogLevel gLogLevel{LogLevel::Warning}; #else LogLevel gLogLevel{LogLevel::Error}; #endif /************************************************ * Library initialization ************************************************/ #if defined(_WIN32) && !defined(AL_LIBTYPE_STATIC) BOOL APIENTRY DllMain(HINSTANCE module, DWORD reason, LPVOID /*reserved*/) { switch(reason) { case DLL_PROCESS_ATTACH: /* Pin the DLL so we won't get unloaded until the process terminates */ GetModuleHandleExW(GET_MODULE_HANDLE_EX_FLAG_PIN | GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS, reinterpret_cast(module), &module); break; } return TRUE; } #endif namespace { using namespace std::placeholders; using std::chrono::seconds; using std::chrono::nanoseconds; using voidp = void*; using float2 = std::array; /************************************************ * Backends ************************************************/ struct BackendInfo { const char *name; BackendFactory& (*getFactory)(void); }; BackendInfo BackendList[] = { #ifdef HAVE_PIPEWIRE { "pipewire", PipeWireBackendFactory::getFactory }, #endif #ifdef HAVE_PULSEAUDIO { "pulse", PulseBackendFactory::getFactory }, #endif #ifdef HAVE_WASAPI { "wasapi", WasapiBackendFactory::getFactory }, #endif #ifdef HAVE_COREAUDIO { "core", CoreAudioBackendFactory::getFactory }, #endif #ifdef HAVE_OBOE { "oboe", OboeBackendFactory::getFactory }, #endif #ifdef HAVE_OPENSL { "opensl", OSLBackendFactory::getFactory }, #endif #ifdef HAVE_ALSA { "alsa", AlsaBackendFactory::getFactory }, #endif #ifdef HAVE_SOLARIS { "solaris", SolarisBackendFactory::getFactory }, #endif #ifdef HAVE_SNDIO { "sndio", SndIOBackendFactory::getFactory }, #endif #ifdef HAVE_OSS { "oss", OSSBackendFactory::getFactory }, #endif #ifdef HAVE_JACK { "jack", JackBackendFactory::getFactory }, #endif #ifdef HAVE_DSOUND { "dsound", DSoundBackendFactory::getFactory }, #endif #ifdef HAVE_WINMM { "winmm", WinMMBackendFactory::getFactory }, #endif #ifdef HAVE_PORTAUDIO { "port", PortBackendFactory::getFactory }, #endif #ifdef HAVE_SDL2 { "sdl2", SDL2BackendFactory::getFactory }, #endif { "null", NullBackendFactory::getFactory }, #ifdef HAVE_WAVE { "wave", WaveBackendFactory::getFactory }, #endif }; BackendFactory *PlaybackFactory{}; BackendFactory *CaptureFactory{}; /************************************************ * Functions, enums, and errors ************************************************/ #define DECL(x) { #x, reinterpret_cast(x) } const struct { const char *funcName; void *address; } alcFunctions[] = { DECL(alcCreateContext), DECL(alcMakeContextCurrent), DECL(alcProcessContext), DECL(alcSuspendContext), DECL(alcDestroyContext), DECL(alcGetCurrentContext), DECL(alcGetContextsDevice), DECL(alcOpenDevice), DECL(alcCloseDevice), DECL(alcGetError), DECL(alcIsExtensionPresent), DECL(alcGetProcAddress), DECL(alcGetEnumValue), DECL(alcGetString), DECL(alcGetIntegerv), DECL(alcCaptureOpenDevice), DECL(alcCaptureCloseDevice), DECL(alcCaptureStart), DECL(alcCaptureStop), DECL(alcCaptureSamples), DECL(alcSetThreadContext), DECL(alcGetThreadContext), DECL(alcLoopbackOpenDeviceSOFT), DECL(alcIsRenderFormatSupportedSOFT), DECL(alcRenderSamplesSOFT), DECL(alcDevicePauseSOFT), DECL(alcDeviceResumeSOFT), DECL(alcGetStringiSOFT), DECL(alcResetDeviceSOFT), DECL(alcGetInteger64vSOFT), DECL(alcReopenDeviceSOFT), DECL(alEnable), DECL(alDisable), DECL(alIsEnabled), DECL(alGetString), DECL(alGetBooleanv), DECL(alGetIntegerv), DECL(alGetFloatv), DECL(alGetDoublev), DECL(alGetBoolean), DECL(alGetInteger), DECL(alGetFloat), DECL(alGetDouble), DECL(alGetError), DECL(alIsExtensionPresent), DECL(alGetProcAddress), DECL(alGetEnumValue), DECL(alListenerf), DECL(alListener3f), DECL(alListenerfv), DECL(alListeneri), DECL(alListener3i), DECL(alListeneriv), DECL(alGetListenerf), DECL(alGetListener3f), DECL(alGetListenerfv), DECL(alGetListeneri), DECL(alGetListener3i), DECL(alGetListeneriv), DECL(alGenSources), DECL(alDeleteSources), DECL(alIsSource), DECL(alSourcef), DECL(alSource3f), DECL(alSourcefv), DECL(alSourcei), DECL(alSource3i), DECL(alSourceiv), DECL(alGetSourcef), DECL(alGetSource3f), DECL(alGetSourcefv), DECL(alGetSourcei), DECL(alGetSource3i), DECL(alGetSourceiv), DECL(alSourcePlayv), DECL(alSourceStopv), DECL(alSourceRewindv), DECL(alSourcePausev), DECL(alSourcePlay), DECL(alSourceStop), DECL(alSourceRewind), DECL(alSourcePause), DECL(alSourceQueueBuffers), DECL(alSourceUnqueueBuffers), DECL(alGenBuffers), DECL(alDeleteBuffers), DECL(alIsBuffer), DECL(alBufferData), DECL(alBufferf), DECL(alBuffer3f), DECL(alBufferfv), DECL(alBufferi), DECL(alBuffer3i), DECL(alBufferiv), DECL(alGetBufferf), DECL(alGetBuffer3f), DECL(alGetBufferfv), DECL(alGetBufferi), DECL(alGetBuffer3i), DECL(alGetBufferiv), DECL(alDopplerFactor), DECL(alDopplerVelocity), DECL(alSpeedOfSound), DECL(alDistanceModel), DECL(alGenFilters), DECL(alDeleteFilters), DECL(alIsFilter), DECL(alFilteri), DECL(alFilteriv), DECL(alFilterf), DECL(alFilterfv), DECL(alGetFilteri), DECL(alGetFilteriv), DECL(alGetFilterf), DECL(alGetFilterfv), DECL(alGenEffects), DECL(alDeleteEffects), DECL(alIsEffect), DECL(alEffecti), DECL(alEffectiv), DECL(alEffectf), DECL(alEffectfv), DECL(alGetEffecti), DECL(alGetEffectiv), DECL(alGetEffectf), DECL(alGetEffectfv), DECL(alGenAuxiliaryEffectSlots), DECL(alDeleteAuxiliaryEffectSlots), DECL(alIsAuxiliaryEffectSlot), DECL(alAuxiliaryEffectSloti), DECL(alAuxiliaryEffectSlotiv), DECL(alAuxiliaryEffectSlotf), DECL(alAuxiliaryEffectSlotfv), DECL(alGetAuxiliaryEffectSloti), DECL(alGetAuxiliaryEffectSlotiv), DECL(alGetAuxiliaryEffectSlotf), DECL(alGetAuxiliaryEffectSlotfv), DECL(alDeferUpdatesSOFT), DECL(alProcessUpdatesSOFT), DECL(alSourcedSOFT), DECL(alSource3dSOFT), DECL(alSourcedvSOFT), DECL(alGetSourcedSOFT), DECL(alGetSource3dSOFT), DECL(alGetSourcedvSOFT), DECL(alSourcei64SOFT), DECL(alSource3i64SOFT), DECL(alSourcei64vSOFT), DECL(alGetSourcei64SOFT), DECL(alGetSource3i64SOFT), DECL(alGetSourcei64vSOFT), DECL(alGetStringiSOFT), DECL(alBufferStorageSOFT), DECL(alMapBufferSOFT), DECL(alUnmapBufferSOFT), DECL(alFlushMappedBufferSOFT), DECL(alEventControlSOFT), DECL(alEventCallbackSOFT), DECL(alGetPointerSOFT), DECL(alGetPointervSOFT), DECL(alBufferCallbackSOFT), DECL(alGetBufferPtrSOFT), DECL(alGetBuffer3PtrSOFT), DECL(alGetBufferPtrvSOFT), DECL(alAuxiliaryEffectSlotPlaySOFT), DECL(alAuxiliaryEffectSlotPlayvSOFT), DECL(alAuxiliaryEffectSlotStopSOFT), DECL(alAuxiliaryEffectSlotStopvSOFT), #ifdef ALSOFT_EAX }, eaxFunctions[] = { DECL(EAXGet), DECL(EAXSet), DECL(EAXGetBufferMode), DECL(EAXSetBufferMode), #endif }; #undef DECL #define DECL(x) { #x, (x) } constexpr struct { const ALCchar *enumName; ALCenum value; } alcEnumerations[] = { DECL(ALC_INVALID), DECL(ALC_FALSE), DECL(ALC_TRUE), DECL(ALC_MAJOR_VERSION), DECL(ALC_MINOR_VERSION), DECL(ALC_ATTRIBUTES_SIZE), DECL(ALC_ALL_ATTRIBUTES), DECL(ALC_DEFAULT_DEVICE_SPECIFIER), DECL(ALC_DEVICE_SPECIFIER), DECL(ALC_ALL_DEVICES_SPECIFIER), DECL(ALC_DEFAULT_ALL_DEVICES_SPECIFIER), DECL(ALC_EXTENSIONS), DECL(ALC_FREQUENCY), DECL(ALC_REFRESH), DECL(ALC_SYNC), DECL(ALC_MONO_SOURCES), DECL(ALC_STEREO_SOURCES), DECL(ALC_CAPTURE_DEVICE_SPECIFIER), DECL(ALC_CAPTURE_DEFAULT_DEVICE_SPECIFIER), DECL(ALC_CAPTURE_SAMPLES), DECL(ALC_CONNECTED), DECL(ALC_EFX_MAJOR_VERSION), DECL(ALC_EFX_MINOR_VERSION), DECL(ALC_MAX_AUXILIARY_SENDS), DECL(ALC_FORMAT_CHANNELS_SOFT), DECL(ALC_FORMAT_TYPE_SOFT), DECL(ALC_MONO_SOFT), DECL(ALC_STEREO_SOFT), DECL(ALC_QUAD_SOFT), DECL(ALC_5POINT1_SOFT), DECL(ALC_6POINT1_SOFT), DECL(ALC_7POINT1_SOFT), DECL(ALC_BFORMAT3D_SOFT), DECL(ALC_BYTE_SOFT), DECL(ALC_UNSIGNED_BYTE_SOFT), DECL(ALC_SHORT_SOFT), DECL(ALC_UNSIGNED_SHORT_SOFT), DECL(ALC_INT_SOFT), DECL(ALC_UNSIGNED_INT_SOFT), DECL(ALC_FLOAT_SOFT), DECL(ALC_HRTF_SOFT), DECL(ALC_DONT_CARE_SOFT), DECL(ALC_HRTF_STATUS_SOFT), DECL(ALC_HRTF_DISABLED_SOFT), DECL(ALC_HRTF_ENABLED_SOFT), DECL(ALC_HRTF_DENIED_SOFT), DECL(ALC_HRTF_REQUIRED_SOFT), DECL(ALC_HRTF_HEADPHONES_DETECTED_SOFT), DECL(ALC_HRTF_UNSUPPORTED_FORMAT_SOFT), DECL(ALC_NUM_HRTF_SPECIFIERS_SOFT), DECL(ALC_HRTF_SPECIFIER_SOFT), DECL(ALC_HRTF_ID_SOFT), DECL(ALC_AMBISONIC_LAYOUT_SOFT), DECL(ALC_AMBISONIC_SCALING_SOFT), DECL(ALC_AMBISONIC_ORDER_SOFT), DECL(ALC_ACN_SOFT), DECL(ALC_FUMA_SOFT), DECL(ALC_N3D_SOFT), DECL(ALC_SN3D_SOFT), DECL(ALC_OUTPUT_LIMITER_SOFT), DECL(ALC_OUTPUT_MODE_SOFT), DECL(ALC_ANY_SOFT), DECL(ALC_STEREO_BASIC_SOFT), DECL(ALC_STEREO_UHJ_SOFT), DECL(ALC_STEREO_HRTF_SOFT), DECL(ALC_SURROUND_5_1_SOFT), DECL(ALC_SURROUND_6_1_SOFT), DECL(ALC_SURROUND_7_1_SOFT), DECL(ALC_NO_ERROR), DECL(ALC_INVALID_DEVICE), DECL(ALC_INVALID_CONTEXT), DECL(ALC_INVALID_ENUM), DECL(ALC_INVALID_VALUE), DECL(ALC_OUT_OF_MEMORY), DECL(AL_INVALID), DECL(AL_NONE), DECL(AL_FALSE), DECL(AL_TRUE), DECL(AL_SOURCE_RELATIVE), DECL(AL_CONE_INNER_ANGLE), DECL(AL_CONE_OUTER_ANGLE), DECL(AL_PITCH), DECL(AL_POSITION), DECL(AL_DIRECTION), DECL(AL_VELOCITY), DECL(AL_LOOPING), DECL(AL_BUFFER), DECL(AL_GAIN), DECL(AL_MIN_GAIN), DECL(AL_MAX_GAIN), DECL(AL_ORIENTATION), DECL(AL_REFERENCE_DISTANCE), DECL(AL_ROLLOFF_FACTOR), DECL(AL_CONE_OUTER_GAIN), DECL(AL_MAX_DISTANCE), DECL(AL_SEC_OFFSET), DECL(AL_SAMPLE_OFFSET), DECL(AL_BYTE_OFFSET), DECL(AL_SOURCE_TYPE), DECL(AL_STATIC), DECL(AL_STREAMING), DECL(AL_UNDETERMINED), DECL(AL_METERS_PER_UNIT), DECL(AL_LOOP_POINTS_SOFT), DECL(AL_DIRECT_CHANNELS_SOFT), DECL(AL_DIRECT_FILTER), DECL(AL_AUXILIARY_SEND_FILTER), DECL(AL_AIR_ABSORPTION_FACTOR), DECL(AL_ROOM_ROLLOFF_FACTOR), DECL(AL_CONE_OUTER_GAINHF), DECL(AL_DIRECT_FILTER_GAINHF_AUTO), DECL(AL_AUXILIARY_SEND_FILTER_GAIN_AUTO), DECL(AL_AUXILIARY_SEND_FILTER_GAINHF_AUTO), DECL(AL_SOURCE_STATE), DECL(AL_INITIAL), DECL(AL_PLAYING), DECL(AL_PAUSED), DECL(AL_STOPPED), DECL(AL_BUFFERS_QUEUED), DECL(AL_BUFFERS_PROCESSED), DECL(AL_FORMAT_MONO8), DECL(AL_FORMAT_MONO16), DECL(AL_FORMAT_MONO_FLOAT32), DECL(AL_FORMAT_MONO_DOUBLE_EXT), DECL(AL_FORMAT_STEREO8), DECL(AL_FORMAT_STEREO16), DECL(AL_FORMAT_STEREO_FLOAT32), DECL(AL_FORMAT_STEREO_DOUBLE_EXT), DECL(AL_FORMAT_MONO_IMA4), DECL(AL_FORMAT_STEREO_IMA4), DECL(AL_FORMAT_MONO_MSADPCM_SOFT), DECL(AL_FORMAT_STEREO_MSADPCM_SOFT), DECL(AL_FORMAT_QUAD8_LOKI), DECL(AL_FORMAT_QUAD16_LOKI), DECL(AL_FORMAT_QUAD8), DECL(AL_FORMAT_QUAD16), DECL(AL_FORMAT_QUAD32), DECL(AL_FORMAT_51CHN8), DECL(AL_FORMAT_51CHN16), DECL(AL_FORMAT_51CHN32), DECL(AL_FORMAT_61CHN8), DECL(AL_FORMAT_61CHN16), DECL(AL_FORMAT_61CHN32), DECL(AL_FORMAT_71CHN8), DECL(AL_FORMAT_71CHN16), DECL(AL_FORMAT_71CHN32), DECL(AL_FORMAT_REAR8), DECL(AL_FORMAT_REAR16), DECL(AL_FORMAT_REAR32), DECL(AL_FORMAT_MONO_MULAW), DECL(AL_FORMAT_MONO_MULAW_EXT), DECL(AL_FORMAT_STEREO_MULAW), DECL(AL_FORMAT_STEREO_MULAW_EXT), DECL(AL_FORMAT_QUAD_MULAW), DECL(AL_FORMAT_51CHN_MULAW), DECL(AL_FORMAT_61CHN_MULAW), DECL(AL_FORMAT_71CHN_MULAW), DECL(AL_FORMAT_REAR_MULAW), DECL(AL_FORMAT_MONO_ALAW_EXT), DECL(AL_FORMAT_STEREO_ALAW_EXT), DECL(AL_FORMAT_BFORMAT2D_8), DECL(AL_FORMAT_BFORMAT2D_16), DECL(AL_FORMAT_BFORMAT2D_FLOAT32), DECL(AL_FORMAT_BFORMAT2D_MULAW), DECL(AL_FORMAT_BFORMAT3D_8), DECL(AL_FORMAT_BFORMAT3D_16), DECL(AL_FORMAT_BFORMAT3D_FLOAT32), DECL(AL_FORMAT_BFORMAT3D_MULAW), DECL(AL_FREQUENCY), DECL(AL_BITS), DECL(AL_CHANNELS), DECL(AL_SIZE), DECL(AL_UNPACK_BLOCK_ALIGNMENT_SOFT), DECL(AL_PACK_BLOCK_ALIGNMENT_SOFT), DECL(AL_SOURCE_RADIUS), DECL(AL_STEREO_ANGLES), DECL(AL_UNUSED), DECL(AL_PENDING), DECL(AL_PROCESSED), DECL(AL_NO_ERROR), DECL(AL_INVALID_NAME), DECL(AL_INVALID_ENUM), DECL(AL_INVALID_VALUE), DECL(AL_INVALID_OPERATION), DECL(AL_OUT_OF_MEMORY), DECL(AL_VENDOR), DECL(AL_VERSION), DECL(AL_RENDERER), DECL(AL_EXTENSIONS), DECL(AL_DOPPLER_FACTOR), DECL(AL_DOPPLER_VELOCITY), DECL(AL_DISTANCE_MODEL), DECL(AL_SPEED_OF_SOUND), DECL(AL_SOURCE_DISTANCE_MODEL), DECL(AL_DEFERRED_UPDATES_SOFT), DECL(AL_GAIN_LIMIT_SOFT), DECL(AL_INVERSE_DISTANCE), DECL(AL_INVERSE_DISTANCE_CLAMPED), DECL(AL_LINEAR_DISTANCE), DECL(AL_LINEAR_DISTANCE_CLAMPED), DECL(AL_EXPONENT_DISTANCE), DECL(AL_EXPONENT_DISTANCE_CLAMPED), DECL(AL_FILTER_TYPE), DECL(AL_FILTER_NULL), DECL(AL_FILTER_LOWPASS), DECL(AL_FILTER_HIGHPASS), DECL(AL_FILTER_BANDPASS), DECL(AL_LOWPASS_GAIN), DECL(AL_LOWPASS_GAINHF), DECL(AL_HIGHPASS_GAIN), DECL(AL_HIGHPASS_GAINLF), DECL(AL_BANDPASS_GAIN), DECL(AL_BANDPASS_GAINHF), DECL(AL_BANDPASS_GAINLF), DECL(AL_EFFECT_TYPE), DECL(AL_EFFECT_NULL), DECL(AL_EFFECT_REVERB), DECL(AL_EFFECT_EAXREVERB), DECL(AL_EFFECT_CHORUS), DECL(AL_EFFECT_DISTORTION), DECL(AL_EFFECT_ECHO), DECL(AL_EFFECT_FLANGER), DECL(AL_EFFECT_PITCH_SHIFTER), DECL(AL_EFFECT_FREQUENCY_SHIFTER), DECL(AL_EFFECT_VOCAL_MORPHER), DECL(AL_EFFECT_RING_MODULATOR), DECL(AL_EFFECT_AUTOWAH), DECL(AL_EFFECT_COMPRESSOR), DECL(AL_EFFECT_EQUALIZER), DECL(AL_EFFECT_DEDICATED_LOW_FREQUENCY_EFFECT), DECL(AL_EFFECT_DEDICATED_DIALOGUE), DECL(AL_EFFECTSLOT_EFFECT), DECL(AL_EFFECTSLOT_GAIN), DECL(AL_EFFECTSLOT_AUXILIARY_SEND_AUTO), DECL(AL_EFFECTSLOT_NULL), DECL(AL_EAXREVERB_DENSITY), DECL(AL_EAXREVERB_DIFFUSION), DECL(AL_EAXREVERB_GAIN), DECL(AL_EAXREVERB_GAINHF), DECL(AL_EAXREVERB_GAINLF), DECL(AL_EAXREVERB_DECAY_TIME), DECL(AL_EAXREVERB_DECAY_HFRATIO), DECL(AL_EAXREVERB_DECAY_LFRATIO), DECL(AL_EAXREVERB_REFLECTIONS_GAIN), DECL(AL_EAXREVERB_REFLECTIONS_DELAY), DECL(AL_EAXREVERB_REFLECTIONS_PAN), DECL(AL_EAXREVERB_LATE_REVERB_GAIN), DECL(AL_EAXREVERB_LATE_REVERB_DELAY), DECL(AL_EAXREVERB_LATE_REVERB_PAN), DECL(AL_EAXREVERB_ECHO_TIME), DECL(AL_EAXREVERB_ECHO_DEPTH), DECL(AL_EAXREVERB_MODULATION_TIME), DECL(AL_EAXREVERB_MODULATION_DEPTH), DECL(AL_EAXREVERB_AIR_ABSORPTION_GAINHF), DECL(AL_EAXREVERB_HFREFERENCE), DECL(AL_EAXREVERB_LFREFERENCE), DECL(AL_EAXREVERB_ROOM_ROLLOFF_FACTOR), DECL(AL_EAXREVERB_DECAY_HFLIMIT), DECL(AL_REVERB_DENSITY), DECL(AL_REVERB_DIFFUSION), DECL(AL_REVERB_GAIN), DECL(AL_REVERB_GAINHF), DECL(AL_REVERB_DECAY_TIME), DECL(AL_REVERB_DECAY_HFRATIO), DECL(AL_REVERB_REFLECTIONS_GAIN), DECL(AL_REVERB_REFLECTIONS_DELAY), DECL(AL_REVERB_LATE_REVERB_GAIN), DECL(AL_REVERB_LATE_REVERB_DELAY), DECL(AL_REVERB_AIR_ABSORPTION_GAINHF), DECL(AL_REVERB_ROOM_ROLLOFF_FACTOR), DECL(AL_REVERB_DECAY_HFLIMIT), DECL(AL_CHORUS_WAVEFORM), DECL(AL_CHORUS_PHASE), DECL(AL_CHORUS_RATE), DECL(AL_CHORUS_DEPTH), DECL(AL_CHORUS_FEEDBACK), DECL(AL_CHORUS_DELAY), DECL(AL_DISTORTION_EDGE), DECL(AL_DISTORTION_GAIN), DECL(AL_DISTORTION_LOWPASS_CUTOFF), DECL(AL_DISTORTION_EQCENTER), DECL(AL_DISTORTION_EQBANDWIDTH), DECL(AL_ECHO_DELAY), DECL(AL_ECHO_LRDELAY), DECL(AL_ECHO_DAMPING), DECL(AL_ECHO_FEEDBACK), DECL(AL_ECHO_SPREAD), DECL(AL_FLANGER_WAVEFORM), DECL(AL_FLANGER_PHASE), DECL(AL_FLANGER_RATE), DECL(AL_FLANGER_DEPTH), DECL(AL_FLANGER_FEEDBACK), DECL(AL_FLANGER_DELAY), DECL(AL_FREQUENCY_SHIFTER_FREQUENCY), DECL(AL_FREQUENCY_SHIFTER_LEFT_DIRECTION), DECL(AL_FREQUENCY_SHIFTER_RIGHT_DIRECTION), DECL(AL_RING_MODULATOR_FREQUENCY), DECL(AL_RING_MODULATOR_HIGHPASS_CUTOFF), DECL(AL_RING_MODULATOR_WAVEFORM), DECL(AL_PITCH_SHIFTER_COARSE_TUNE), DECL(AL_PITCH_SHIFTER_FINE_TUNE), DECL(AL_COMPRESSOR_ONOFF), DECL(AL_EQUALIZER_LOW_GAIN), DECL(AL_EQUALIZER_LOW_CUTOFF), DECL(AL_EQUALIZER_MID1_GAIN), DECL(AL_EQUALIZER_MID1_CENTER), DECL(AL_EQUALIZER_MID1_WIDTH), DECL(AL_EQUALIZER_MID2_GAIN), DECL(AL_EQUALIZER_MID2_CENTER), DECL(AL_EQUALIZER_MID2_WIDTH), DECL(AL_EQUALIZER_HIGH_GAIN), DECL(AL_EQUALIZER_HIGH_CUTOFF), DECL(AL_DEDICATED_GAIN), DECL(AL_AUTOWAH_ATTACK_TIME), DECL(AL_AUTOWAH_RELEASE_TIME), DECL(AL_AUTOWAH_RESONANCE), DECL(AL_AUTOWAH_PEAK_GAIN), DECL(AL_VOCAL_MORPHER_PHONEMEA), DECL(AL_VOCAL_MORPHER_PHONEMEB_COARSE_TUNING), DECL(AL_VOCAL_MORPHER_PHONEMEB), DECL(AL_VOCAL_MORPHER_PHONEMEB_COARSE_TUNING), DECL(AL_VOCAL_MORPHER_WAVEFORM), DECL(AL_VOCAL_MORPHER_RATE), DECL(AL_EFFECTSLOT_TARGET_SOFT), DECL(AL_NUM_RESAMPLERS_SOFT), DECL(AL_DEFAULT_RESAMPLER_SOFT), DECL(AL_SOURCE_RESAMPLER_SOFT), DECL(AL_RESAMPLER_NAME_SOFT), DECL(AL_SOURCE_SPATIALIZE_SOFT), DECL(AL_AUTO_SOFT), DECL(AL_MAP_READ_BIT_SOFT), DECL(AL_MAP_WRITE_BIT_SOFT), DECL(AL_MAP_PERSISTENT_BIT_SOFT), DECL(AL_PRESERVE_DATA_BIT_SOFT), DECL(AL_EVENT_CALLBACK_FUNCTION_SOFT), DECL(AL_EVENT_CALLBACK_USER_PARAM_SOFT), DECL(AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT), DECL(AL_EVENT_TYPE_SOURCE_STATE_CHANGED_SOFT), DECL(AL_EVENT_TYPE_DISCONNECTED_SOFT), DECL(AL_DROP_UNMATCHED_SOFT), DECL(AL_REMIX_UNMATCHED_SOFT), DECL(AL_AMBISONIC_LAYOUT_SOFT), DECL(AL_AMBISONIC_SCALING_SOFT), DECL(AL_FUMA_SOFT), DECL(AL_ACN_SOFT), DECL(AL_SN3D_SOFT), DECL(AL_N3D_SOFT), DECL(AL_BUFFER_CALLBACK_FUNCTION_SOFT), DECL(AL_BUFFER_CALLBACK_USER_PARAM_SOFT), DECL(AL_UNPACK_AMBISONIC_ORDER_SOFT), DECL(AL_EFFECT_CONVOLUTION_REVERB_SOFT), DECL(AL_EFFECTSLOT_STATE_SOFT), DECL(AL_FORMAT_UHJ2CHN8_SOFT), DECL(AL_FORMAT_UHJ2CHN16_SOFT), DECL(AL_FORMAT_UHJ2CHN_FLOAT32_SOFT), DECL(AL_FORMAT_UHJ3CHN8_SOFT), DECL(AL_FORMAT_UHJ3CHN16_SOFT), DECL(AL_FORMAT_UHJ3CHN_FLOAT32_SOFT), DECL(AL_FORMAT_UHJ4CHN8_SOFT), DECL(AL_FORMAT_UHJ4CHN16_SOFT), DECL(AL_FORMAT_UHJ4CHN_FLOAT32_SOFT), DECL(AL_STEREO_MODE_SOFT), DECL(AL_NORMAL_SOFT), DECL(AL_SUPER_STEREO_SOFT), DECL(AL_SUPER_STEREO_WIDTH_SOFT), DECL(AL_STOP_SOURCES_ON_DISCONNECT_SOFT), #ifdef ALSOFT_EAX }, eaxEnumerations[] = { DECL(AL_EAX_RAM_SIZE), DECL(AL_EAX_RAM_FREE), DECL(AL_STORAGE_AUTOMATIC), DECL(AL_STORAGE_HARDWARE), DECL(AL_STORAGE_ACCESSIBLE), #endif // ALSOFT_EAX }; #undef DECL constexpr ALCchar alcNoError[] = "No Error"; constexpr ALCchar alcErrInvalidDevice[] = "Invalid Device"; constexpr ALCchar alcErrInvalidContext[] = "Invalid Context"; constexpr ALCchar alcErrInvalidEnum[] = "Invalid Enum"; constexpr ALCchar alcErrInvalidValue[] = "Invalid Value"; constexpr ALCchar alcErrOutOfMemory[] = "Out of Memory"; /************************************************ * Global variables ************************************************/ /* Enumerated device names */ constexpr ALCchar alcDefaultName[] = "OpenAL Soft\0"; std::string alcAllDevicesList; std::string alcCaptureDeviceList; /* Default is always the first in the list */ std::string alcDefaultAllDevicesSpecifier; std::string alcCaptureDefaultDeviceSpecifier; std::atomic LastNullDeviceError{ALC_NO_ERROR}; /* Flag to trap ALC device errors */ bool TrapALCError{false}; /* One-time configuration init control */ std::once_flag alc_config_once{}; /* Flag to specify if alcSuspendContext/alcProcessContext should defer/process * updates. */ bool SuspendDefers{true}; /* Initial seed for dithering. */ constexpr uint DitherRNGSeed{22222u}; /************************************************ * ALC information ************************************************/ constexpr ALCchar alcNoDeviceExtList[] = "ALC_ENUMERATE_ALL_EXT " "ALC_ENUMERATION_EXT " "ALC_EXT_CAPTURE " "ALC_EXT_EFX " "ALC_EXT_thread_local_context " "ALC_SOFT_loopback " "ALC_SOFT_loopback_bformat " "ALC_SOFT_reopen_device"; constexpr ALCchar alcExtensionList[] = "ALC_ENUMERATE_ALL_EXT " "ALC_ENUMERATION_EXT " "ALC_EXT_CAPTURE " "ALC_EXT_DEDICATED " "ALC_EXT_disconnect " "ALC_EXT_EFX " "ALC_EXT_thread_local_context " "ALC_SOFT_device_clock " "ALC_SOFT_HRTF " "ALC_SOFT_loopback " "ALC_SOFT_loopback_bformat " "ALC_SOFT_output_limiter " "ALC_SOFT_output_mode " "ALC_SOFT_pause_device " "ALC_SOFT_reopen_device"; constexpr int alcMajorVersion{1}; constexpr int alcMinorVersion{1}; constexpr int alcEFXMajorVersion{1}; constexpr int alcEFXMinorVersion{0}; using DeviceRef = al::intrusive_ptr; /************************************************ * Device lists ************************************************/ al::vector DeviceList; al::vector ContextList; std::recursive_mutex ListLock; void alc_initconfig(void) { if(auto loglevel = al::getenv("ALSOFT_LOGLEVEL")) { long lvl = strtol(loglevel->c_str(), nullptr, 0); if(lvl >= static_cast(LogLevel::Trace)) gLogLevel = LogLevel::Trace; else if(lvl <= static_cast(LogLevel::Disable)) gLogLevel = LogLevel::Disable; else gLogLevel = static_cast(lvl); } #ifdef _WIN32 if(const auto logfile = al::getenv(L"ALSOFT_LOGFILE")) { FILE *logf{_wfopen(logfile->c_str(), L"wt")}; if(logf) gLogFile = logf; else { auto u8name = wstr_to_utf8(logfile->c_str()); ERR("Failed to open log file '%s'\n", u8name.c_str()); } } #else if(const auto logfile = al::getenv("ALSOFT_LOGFILE")) { FILE *logf{fopen(logfile->c_str(), "wt")}; if(logf) gLogFile = logf; else ERR("Failed to open log file '%s'\n", logfile->c_str()); } #endif TRACE("Initializing library v%s-%s %s\n", ALSOFT_VERSION, ALSOFT_GIT_COMMIT_HASH, ALSOFT_GIT_BRANCH); { std::string names; if(al::size(BackendList) < 1) names = "(none)"; else { const al::span infos{BackendList}; names = infos[0].name; for(const auto &backend : infos.subspan<1>()) { names += ", "; names += backend.name; } } TRACE("Supported backends: %s\n", names.c_str()); } ReadALConfig(); if(auto suspendmode = al::getenv("__ALSOFT_SUSPEND_CONTEXT")) { if(al::strcasecmp(suspendmode->c_str(), "ignore") == 0) { SuspendDefers = false; TRACE("Selected context suspend behavior, \"ignore\"\n"); } else ERR("Unhandled context suspend behavior setting: \"%s\"\n", suspendmode->c_str()); } int capfilter{0}; #if defined(HAVE_SSE4_1) capfilter |= CPU_CAP_SSE | CPU_CAP_SSE2 | CPU_CAP_SSE3 | CPU_CAP_SSE4_1; #elif defined(HAVE_SSE3) capfilter |= CPU_CAP_SSE | CPU_CAP_SSE2 | CPU_CAP_SSE3; #elif defined(HAVE_SSE2) capfilter |= CPU_CAP_SSE | CPU_CAP_SSE2; #elif defined(HAVE_SSE) capfilter |= CPU_CAP_SSE; #endif #ifdef HAVE_NEON capfilter |= CPU_CAP_NEON; #endif if(auto cpuopt = ConfigValueStr(nullptr, nullptr, "disable-cpu-exts")) { const char *str{cpuopt->c_str()}; if(al::strcasecmp(str, "all") == 0) capfilter = 0; else { const char *next = str; do { str = next; while(isspace(str[0])) str++; next = strchr(str, ','); if(!str[0] || str[0] == ',') continue; size_t len{next ? static_cast(next-str) : strlen(str)}; while(len > 0 && isspace(str[len-1])) len--; if(len == 3 && al::strncasecmp(str, "sse", len) == 0) capfilter &= ~CPU_CAP_SSE; else if(len == 4 && al::strncasecmp(str, "sse2", len) == 0) capfilter &= ~CPU_CAP_SSE2; else if(len == 4 && al::strncasecmp(str, "sse3", len) == 0) capfilter &= ~CPU_CAP_SSE3; else if(len == 6 && al::strncasecmp(str, "sse4.1", len) == 0) capfilter &= ~CPU_CAP_SSE4_1; else if(len == 4 && al::strncasecmp(str, "neon", len) == 0) capfilter &= ~CPU_CAP_NEON; else WARN("Invalid CPU extension \"%s\"\n", str); } while(next++); } } if(auto cpuopt = GetCPUInfo()) { if(!cpuopt->mVendor.empty() || !cpuopt->mName.empty()) { TRACE("Vendor ID: \"%s\"\n", cpuopt->mVendor.c_str()); TRACE("Name: \"%s\"\n", cpuopt->mName.c_str()); } const int caps{cpuopt->mCaps}; TRACE("Extensions:%s%s%s%s%s%s\n", ((capfilter&CPU_CAP_SSE) ? ((caps&CPU_CAP_SSE) ? " +SSE" : " -SSE") : ""), ((capfilter&CPU_CAP_SSE2) ? ((caps&CPU_CAP_SSE2) ? " +SSE2" : " -SSE2") : ""), ((capfilter&CPU_CAP_SSE3) ? ((caps&CPU_CAP_SSE3) ? " +SSE3" : " -SSE3") : ""), ((capfilter&CPU_CAP_SSE4_1) ? ((caps&CPU_CAP_SSE4_1) ? " +SSE4.1" : " -SSE4.1") : ""), ((capfilter&CPU_CAP_NEON) ? ((caps&CPU_CAP_NEON) ? " +NEON" : " -NEON") : ""), ((!capfilter) ? " -none-" : "")); CPUCapFlags = caps & capfilter; } if(auto priopt = ConfigValueInt(nullptr, nullptr, "rt-prio")) RTPrioLevel = *priopt; if(auto limopt = ConfigValueBool(nullptr, nullptr, "rt-time-limit")) AllowRTTimeLimit = *limopt; { CompatFlagBitset compatflags{}; auto checkflag = [](const char *envname, const char *optname) -> bool { if(auto optval = al::getenv(envname)) { if(al::strcasecmp(optval->c_str(), "true") == 0 || strtol(optval->c_str(), nullptr, 0) == 1) return true; return false; } return GetConfigValueBool(nullptr, "game_compat", optname, false); }; compatflags.set(CompatFlags::ReverseX, checkflag("__ALSOFT_REVERSE_X", "reverse-x")); compatflags.set(CompatFlags::ReverseY, checkflag("__ALSOFT_REVERSE_Y", "reverse-y")); compatflags.set(CompatFlags::ReverseZ, checkflag("__ALSOFT_REVERSE_Z", "reverse-z")); aluInit(compatflags, ConfigValueFloat(nullptr, "game_compat", "nfc-scale").value_or(1.0f)); } Voice::InitMixer(ConfigValueStr(nullptr, nullptr, "resampler")); if(auto uhjfiltopt = ConfigValueStr(nullptr, "uhj", "filter")) { if(al::strcasecmp(uhjfiltopt->c_str(), "fir256") == 0) UhjQuality = UhjLengthLq; else if(al::strcasecmp(uhjfiltopt->c_str(), "fir512") == 0) UhjQuality = UhjLengthHq; else WARN("Unsupported uhj/filter: %s\n", uhjfiltopt->c_str()); } auto traperr = al::getenv("ALSOFT_TRAP_ERROR"); if(traperr && (al::strcasecmp(traperr->c_str(), "true") == 0 || std::strtol(traperr->c_str(), nullptr, 0) == 1)) { TrapALError = true; TrapALCError = true; } else { traperr = al::getenv("ALSOFT_TRAP_AL_ERROR"); if(traperr) TrapALError = al::strcasecmp(traperr->c_str(), "true") == 0 || strtol(traperr->c_str(), nullptr, 0) == 1; else TrapALError = !!GetConfigValueBool(nullptr, nullptr, "trap-al-error", false); traperr = al::getenv("ALSOFT_TRAP_ALC_ERROR"); if(traperr) TrapALCError = al::strcasecmp(traperr->c_str(), "true") == 0 || strtol(traperr->c_str(), nullptr, 0) == 1; else TrapALCError = !!GetConfigValueBool(nullptr, nullptr, "trap-alc-error", false); } if(auto boostopt = ConfigValueFloat(nullptr, "reverb", "boost")) { const float valf{std::isfinite(*boostopt) ? clampf(*boostopt, -24.0f, 24.0f) : 0.0f}; ReverbBoost *= std::pow(10.0f, valf / 20.0f); } auto BackendListEnd = std::end(BackendList); auto devopt = al::getenv("ALSOFT_DRIVERS"); if(devopt || (devopt=ConfigValueStr(nullptr, nullptr, "drivers"))) { auto backendlist_cur = std::begin(BackendList); bool endlist{true}; const char *next{devopt->c_str()}; do { const char *devs{next}; while(isspace(devs[0])) devs++; next = strchr(devs, ','); const bool delitem{devs[0] == '-'}; if(devs[0] == '-') devs++; if(!devs[0] || devs[0] == ',') { endlist = false; continue; } endlist = true; size_t len{next ? (static_cast(next-devs)) : strlen(devs)}; while(len > 0 && isspace(devs[len-1])) --len; #ifdef HAVE_WASAPI /* HACK: For backwards compatibility, convert backend references of * mmdevapi to wasapi. This should eventually be removed. */ if(len == 8 && strncmp(devs, "mmdevapi", len) == 0) { devs = "wasapi"; len = 6; } #endif auto find_backend = [devs,len](const BackendInfo &backend) -> bool { return len == strlen(backend.name) && strncmp(backend.name, devs, len) == 0; }; auto this_backend = std::find_if(std::begin(BackendList), BackendListEnd, find_backend); if(this_backend == BackendListEnd) continue; if(delitem) BackendListEnd = std::move(this_backend+1, BackendListEnd, this_backend); else backendlist_cur = std::rotate(backendlist_cur, this_backend, this_backend+1); } while(next++); if(endlist) BackendListEnd = backendlist_cur; } auto init_backend = [](BackendInfo &backend) -> void { if(PlaybackFactory && CaptureFactory) return; BackendFactory &factory = backend.getFactory(); if(!factory.init()) { WARN("Failed to initialize backend \"%s\"\n", backend.name); return; } TRACE("Initialized backend \"%s\"\n", backend.name); if(!PlaybackFactory && factory.querySupport(BackendType::Playback)) { PlaybackFactory = &factory; TRACE("Added \"%s\" for playback\n", backend.name); } if(!CaptureFactory && factory.querySupport(BackendType::Capture)) { CaptureFactory = &factory; TRACE("Added \"%s\" for capture\n", backend.name); } }; std::for_each(std::begin(BackendList), BackendListEnd, init_backend); LoopbackBackendFactory::getFactory().init(); if(!PlaybackFactory) WARN("No playback backend available!\n"); if(!CaptureFactory) WARN("No capture backend available!\n"); if(auto exclopt = ConfigValueStr(nullptr, nullptr, "excludefx")) { const char *next{exclopt->c_str()}; do { const char *str{next}; next = strchr(str, ','); if(!str[0] || next == str) continue; size_t len{next ? static_cast(next-str) : strlen(str)}; for(const EffectList &effectitem : gEffectList) { if(len == strlen(effectitem.name) && strncmp(effectitem.name, str, len) == 0) DisabledEffects[effectitem.type] = true; } } while(next++); } InitEffect(&ALCcontext::sDefaultEffect); auto defrevopt = al::getenv("ALSOFT_DEFAULT_REVERB"); if(defrevopt || (defrevopt=ConfigValueStr(nullptr, nullptr, "default-reverb"))) LoadReverbPreset(defrevopt->c_str(), &ALCcontext::sDefaultEffect); #ifdef ALSOFT_EAX { static constexpr char eax_block_name[] = "eax"; if(const auto eax_enable_opt = ConfigValueBool(nullptr, eax_block_name, "enable")) { eax_g_is_enabled = *eax_enable_opt; if(!eax_g_is_enabled) TRACE("%s\n", "EAX disabled by a configuration."); } else eax_g_is_enabled = true; if((DisabledEffects[EAXREVERB_EFFECT] || DisabledEffects[CHORUS_EFFECT]) && eax_g_is_enabled) { eax_g_is_enabled = false; TRACE("EAX disabled because %s disabled.\n", (DisabledEffects[EAXREVERB_EFFECT] && DisabledEffects[CHORUS_EFFECT]) ? "EAXReverb and Chorus are" : DisabledEffects[EAXREVERB_EFFECT] ? "EAXReverb is" : DisabledEffects[CHORUS_EFFECT] ? "Chorus is" : ""); } } #endif // ALSOFT_EAX } inline void InitConfig() { std::call_once(alc_config_once, [](){alc_initconfig();}); } /************************************************ * Device enumeration ************************************************/ void ProbeAllDevicesList() { InitConfig(); std::lock_guard _{ListLock}; if(!PlaybackFactory) decltype(alcAllDevicesList){}.swap(alcAllDevicesList); else { std::string names{PlaybackFactory->probe(BackendType::Playback)}; if(names.empty()) names += '\0'; names.swap(alcAllDevicesList); } } void ProbeCaptureDeviceList() { InitConfig(); std::lock_guard _{ListLock}; if(!CaptureFactory) decltype(alcCaptureDeviceList){}.swap(alcCaptureDeviceList); else { std::string names{CaptureFactory->probe(BackendType::Capture)}; if(names.empty()) names += '\0'; names.swap(alcCaptureDeviceList); } } struct DevFmtPair { DevFmtChannels chans; DevFmtType type; }; al::optional DecomposeDevFormat(ALenum format) { static const struct { ALenum format; DevFmtChannels channels; DevFmtType type; } list[] = { { AL_FORMAT_MONO8, DevFmtMono, DevFmtUByte }, { AL_FORMAT_MONO16, DevFmtMono, DevFmtShort }, { AL_FORMAT_MONO_FLOAT32, DevFmtMono, DevFmtFloat }, { AL_FORMAT_STEREO8, DevFmtStereo, DevFmtUByte }, { AL_FORMAT_STEREO16, DevFmtStereo, DevFmtShort }, { AL_FORMAT_STEREO_FLOAT32, DevFmtStereo, DevFmtFloat }, { AL_FORMAT_QUAD8, DevFmtQuad, DevFmtUByte }, { AL_FORMAT_QUAD16, DevFmtQuad, DevFmtShort }, { AL_FORMAT_QUAD32, DevFmtQuad, DevFmtFloat }, { AL_FORMAT_51CHN8, DevFmtX51, DevFmtUByte }, { AL_FORMAT_51CHN16, DevFmtX51, DevFmtShort }, { AL_FORMAT_51CHN32, DevFmtX51, DevFmtFloat }, { AL_FORMAT_61CHN8, DevFmtX61, DevFmtUByte }, { AL_FORMAT_61CHN16, DevFmtX61, DevFmtShort }, { AL_FORMAT_61CHN32, DevFmtX61, DevFmtFloat }, { AL_FORMAT_71CHN8, DevFmtX71, DevFmtUByte }, { AL_FORMAT_71CHN16, DevFmtX71, DevFmtShort }, { AL_FORMAT_71CHN32, DevFmtX71, DevFmtFloat }, }; for(const auto &item : list) { if(item.format == format) return al::make_optional(DevFmtPair{item.channels, item.type}); } return al::nullopt; } al::optional DevFmtTypeFromEnum(ALCenum type) { switch(type) { case ALC_BYTE_SOFT: return al::make_optional(DevFmtByte); case ALC_UNSIGNED_BYTE_SOFT: return al::make_optional(DevFmtUByte); case ALC_SHORT_SOFT: return al::make_optional(DevFmtShort); case ALC_UNSIGNED_SHORT_SOFT: return al::make_optional(DevFmtUShort); case ALC_INT_SOFT: return al::make_optional(DevFmtInt); case ALC_UNSIGNED_INT_SOFT: return al::make_optional(DevFmtUInt); case ALC_FLOAT_SOFT: return al::make_optional(DevFmtFloat); } WARN("Unsupported format type: 0x%04x\n", type); return al::nullopt; } ALCenum EnumFromDevFmt(DevFmtType type) { switch(type) { case DevFmtByte: return ALC_BYTE_SOFT; case DevFmtUByte: return ALC_UNSIGNED_BYTE_SOFT; case DevFmtShort: return ALC_SHORT_SOFT; case DevFmtUShort: return ALC_UNSIGNED_SHORT_SOFT; case DevFmtInt: return ALC_INT_SOFT; case DevFmtUInt: return ALC_UNSIGNED_INT_SOFT; case DevFmtFloat: return ALC_FLOAT_SOFT; } throw std::runtime_error{"Invalid DevFmtType: "+std::to_string(int(type))}; } al::optional DevFmtChannelsFromEnum(ALCenum channels) { switch(channels) { case ALC_MONO_SOFT: return al::make_optional(DevFmtMono); case ALC_STEREO_SOFT: return al::make_optional(DevFmtStereo); case ALC_QUAD_SOFT: return al::make_optional(DevFmtQuad); case ALC_5POINT1_SOFT: return al::make_optional(DevFmtX51); case ALC_6POINT1_SOFT: return al::make_optional(DevFmtX61); case ALC_7POINT1_SOFT: return al::make_optional(DevFmtX71); case ALC_BFORMAT3D_SOFT: return al::make_optional(DevFmtAmbi3D); } WARN("Unsupported format channels: 0x%04x\n", channels); return al::nullopt; } ALCenum EnumFromDevFmt(DevFmtChannels channels) { switch(channels) { case DevFmtMono: return ALC_MONO_SOFT; case DevFmtStereo: return ALC_STEREO_SOFT; case DevFmtQuad: return ALC_QUAD_SOFT; case DevFmtX51: return ALC_5POINT1_SOFT; case DevFmtX61: return ALC_6POINT1_SOFT; case DevFmtX71: return ALC_7POINT1_SOFT; case DevFmtAmbi3D: return ALC_BFORMAT3D_SOFT; /* FIXME: Shouldn't happen. */ case DevFmtX3D71: break; } throw std::runtime_error{"Invalid DevFmtChannels: "+std::to_string(int(channels))}; } al::optional DevAmbiLayoutFromEnum(ALCenum layout) { switch(layout) { case ALC_FUMA_SOFT: return al::make_optional(DevAmbiLayout::FuMa); case ALC_ACN_SOFT: return al::make_optional(DevAmbiLayout::ACN); } WARN("Unsupported ambisonic layout: 0x%04x\n", layout); return al::nullopt; } ALCenum EnumFromDevAmbi(DevAmbiLayout layout) { switch(layout) { case DevAmbiLayout::FuMa: return ALC_FUMA_SOFT; case DevAmbiLayout::ACN: return ALC_ACN_SOFT; } throw std::runtime_error{"Invalid DevAmbiLayout: "+std::to_string(int(layout))}; } al::optional DevAmbiScalingFromEnum(ALCenum scaling) { switch(scaling) { case ALC_FUMA_SOFT: return al::make_optional(DevAmbiScaling::FuMa); case ALC_SN3D_SOFT: return al::make_optional(DevAmbiScaling::SN3D); case ALC_N3D_SOFT: return al::make_optional(DevAmbiScaling::N3D); } WARN("Unsupported ambisonic scaling: 0x%04x\n", scaling); return al::nullopt; } ALCenum EnumFromDevAmbi(DevAmbiScaling scaling) { switch(scaling) { case DevAmbiScaling::FuMa: return ALC_FUMA_SOFT; case DevAmbiScaling::SN3D: return ALC_SN3D_SOFT; case DevAmbiScaling::N3D: return ALC_N3D_SOFT; } throw std::runtime_error{"Invalid DevAmbiScaling: "+std::to_string(int(scaling))}; } /* Downmixing channel arrays, to map the given format's missing channels to * existing ones. Based on Wine's DSound downmix values, which are based on * PulseAudio's. */ const std::array StereoDownmix{{ { FrontCenter, {{{FrontLeft, 0.5f}, {FrontRight, 0.5f}}} }, { SideLeft, {{{FrontLeft, 1.0f/9.0f}}} }, { SideRight, {{{FrontRight, 1.0f/9.0f}}} }, { BackLeft, {{{FrontLeft, 1.0f/9.0f}}} }, { BackRight, {{{FrontRight, 1.0f/9.0f}}} }, { BackCenter, {{{FrontLeft, 0.5f/9.0f}, {FrontRight, 0.5f/9.0f}}} }, }}; const std::array QuadDownmix{{ { FrontCenter, {{{FrontLeft, 0.5f}, {FrontRight, 0.5f}}} }, { SideLeft, {{{FrontLeft, 0.5f}, {BackLeft, 0.5f}}} }, { SideRight, {{{FrontRight, 0.5f}, {BackRight, 0.5f}}} }, { BackCenter, {{{BackLeft, 0.5f}, {BackRight, 0.5f}}} }, }}; const std::array X51Downmix{{ { BackLeft, {{{SideLeft, 1.0f}}} }, { BackRight, {{{SideRight, 1.0f}}} }, { BackCenter, {{{SideLeft, 0.5f}, {SideRight, 0.5f}}} }, }}; const std::array X61Downmix{{ { BackLeft, {{{BackCenter, 0.5f}, {SideLeft, 0.5f}}} }, { BackRight, {{{BackCenter, 0.5f}, {SideRight, 0.5f}}} }, }}; const std::array X71Downmix{{ { BackCenter, {{{BackLeft, 0.5f}, {BackRight, 0.5f}}} }, }}; /** Stores the latest ALC device error. */ void alcSetError(ALCdevice *device, ALCenum errorCode) { WARN("Error generated on device %p, code 0x%04x\n", voidp{device}, errorCode); if(TrapALCError) { #ifdef _WIN32 /* DebugBreak() will cause an exception if there is no debugger */ if(IsDebuggerPresent()) DebugBreak(); #elif defined(SIGTRAP) raise(SIGTRAP); #endif } if(device) device->LastError.store(errorCode); else LastNullDeviceError.store(errorCode); } std::unique_ptr CreateDeviceLimiter(const ALCdevice *device, const float threshold) { static constexpr bool AutoKnee{true}; static constexpr bool AutoAttack{true}; static constexpr bool AutoRelease{true}; static constexpr bool AutoPostGain{true}; static constexpr bool AutoDeclip{true}; static constexpr float LookAheadTime{0.001f}; static constexpr float HoldTime{0.002f}; static constexpr float PreGainDb{0.0f}; static constexpr float PostGainDb{0.0f}; static constexpr float Ratio{std::numeric_limits::infinity()}; static constexpr float KneeDb{0.0f}; static constexpr float AttackTime{0.02f}; static constexpr float ReleaseTime{0.2f}; return Compressor::Create(device->RealOut.Buffer.size(), static_cast(device->Frequency), AutoKnee, AutoAttack, AutoRelease, AutoPostGain, AutoDeclip, LookAheadTime, HoldTime, PreGainDb, PostGainDb, threshold, Ratio, KneeDb, AttackTime, ReleaseTime); } /** * Updates the device's base clock time with however many samples have been * done. This is used so frequency changes on the device don't cause the time * to jump forward or back. Must not be called while the device is running/ * mixing. */ static inline void UpdateClockBase(ALCdevice *device) { IncrementRef(device->MixCount); device->ClockBase += nanoseconds{seconds{device->SamplesDone}} / device->Frequency; device->SamplesDone = 0; IncrementRef(device->MixCount); } /** * Updates device parameters according to the attribute list (caller is * responsible for holding the list lock). */ ALCenum UpdateDeviceParams(ALCdevice *device, const int *attrList) { if((!attrList || !attrList[0]) && device->Type == DeviceType::Loopback) { WARN("Missing attributes for loopback device\n"); return ALC_INVALID_VALUE; } al::optional stereomode{}; al::optional optlimit{}; int hrtf_id{-1}; // Check for attributes if(attrList && attrList[0]) { uint numMono{device->NumMonoSources}; uint numStereo{device->NumStereoSources}; uint numSends{device->NumAuxSends}; al::optional optchans; al::optional opttype; al::optional optlayout; al::optional optscale; al::optional opthrtf; ALenum outmode{ALC_ANY_SOFT}; uint aorder{0u}; uint freq{0u}; #define ATTRIBUTE(a) a: TRACE("%s = %d\n", #a, attrList[attrIdx + 1]); size_t attrIdx{0}; while(attrList[attrIdx]) { switch(attrList[attrIdx]) { case ATTRIBUTE(ALC_FORMAT_CHANNELS_SOFT) optchans = DevFmtChannelsFromEnum(attrList[attrIdx + 1]); break; case ATTRIBUTE(ALC_FORMAT_TYPE_SOFT) opttype = DevFmtTypeFromEnum(attrList[attrIdx + 1]); break; case ATTRIBUTE(ALC_FREQUENCY) freq = static_cast(attrList[attrIdx + 1]); break; case ATTRIBUTE(ALC_AMBISONIC_LAYOUT_SOFT) optlayout = DevAmbiLayoutFromEnum(attrList[attrIdx + 1]); break; case ATTRIBUTE(ALC_AMBISONIC_SCALING_SOFT) optscale = DevAmbiScalingFromEnum(attrList[attrIdx + 1]); break; case ATTRIBUTE(ALC_AMBISONIC_ORDER_SOFT) aorder = static_cast(attrList[attrIdx + 1]); break; case ATTRIBUTE(ALC_MONO_SOURCES) numMono = static_cast(attrList[attrIdx + 1]); if(numMono > INT_MAX) numMono = 0; break; case ATTRIBUTE(ALC_STEREO_SOURCES) numStereo = static_cast(attrList[attrIdx + 1]); if(numStereo > INT_MAX) numStereo = 0; break; case ATTRIBUTE(ALC_MAX_AUXILIARY_SENDS) numSends = static_cast(attrList[attrIdx + 1]); if(numSends > INT_MAX) numSends = 0; else numSends = minu(numSends, MAX_SENDS); break; case ATTRIBUTE(ALC_HRTF_SOFT) if(attrList[attrIdx + 1] == ALC_FALSE) opthrtf = false; else if(attrList[attrIdx + 1] == ALC_TRUE) opthrtf = true; else if(attrList[attrIdx + 1] == ALC_DONT_CARE_SOFT) opthrtf = al::nullopt; break; case ATTRIBUTE(ALC_HRTF_ID_SOFT) hrtf_id = attrList[attrIdx + 1]; break; case ATTRIBUTE(ALC_OUTPUT_LIMITER_SOFT) if(attrList[attrIdx + 1] == ALC_FALSE) optlimit = false; else if(attrList[attrIdx + 1] == ALC_TRUE) optlimit = true; else if(attrList[attrIdx + 1] == ALC_DONT_CARE_SOFT) optlimit = al::nullopt; break; case ATTRIBUTE(ALC_OUTPUT_MODE_SOFT) outmode = attrList[attrIdx + 1]; break; default: TRACE("0x%04X = %d (0x%x)\n", attrList[attrIdx], attrList[attrIdx + 1], attrList[attrIdx + 1]); break; } attrIdx += 2; } #undef ATTRIBUTE const bool loopback{device->Type == DeviceType::Loopback}; if(loopback) { if(!optchans || !opttype) return ALC_INVALID_VALUE; if(freq < MIN_OUTPUT_RATE || freq > MAX_OUTPUT_RATE) return ALC_INVALID_VALUE; if(*optchans == DevFmtAmbi3D) { if(!optlayout || !optscale) return ALC_INVALID_VALUE; if(aorder < 1 || aorder > MaxAmbiOrder) return ALC_INVALID_VALUE; if((*optlayout == DevAmbiLayout::FuMa || *optscale == DevAmbiScaling::FuMa) && aorder > 3) return ALC_INVALID_VALUE; } } /* If a context is already running on the device, stop playback so the * device attributes can be updated. */ if(device->Flags.test(DeviceRunning)) device->Backend->stop(); device->Flags.reset(DeviceRunning); UpdateClockBase(device); /* Calculate the max number of sources, and split them between the mono * and stereo count given the requested number of stereo sources. */ if(auto srcsopt = device->configValue(nullptr, "sources")) { if(*srcsopt <= 0) numMono = 256; else numMono = *srcsopt; } else { if(numMono > INT_MAX-numStereo) numMono = INT_MAX-numStereo; numMono = maxu(numMono+numStereo, 256); } numStereo = minu(numStereo, numMono); numMono -= numStereo; device->SourcesMax = numMono + numStereo; device->NumMonoSources = numMono; device->NumStereoSources = numStereo; if(auto sendsopt = device->configValue(nullptr, "sends")) numSends = minu(numSends, static_cast(clampi(*sendsopt, 0, MAX_SENDS))); device->NumAuxSends = numSends; if(loopback) { device->Frequency = freq; device->FmtChans = *optchans; device->FmtType = *opttype; if(device->FmtChans == DevFmtAmbi3D) { device->mAmbiOrder = aorder; device->mAmbiLayout = *optlayout; device->mAmbiScale = *optscale; } else if(device->FmtChans == DevFmtStereo) { if(opthrtf) stereomode = *opthrtf ? StereoEncoding::Hrtf : StereoEncoding::Default; if(outmode == ALC_STEREO_BASIC_SOFT) stereomode = StereoEncoding::Basic; else if(outmode == ALC_STEREO_UHJ_SOFT) stereomode = StereoEncoding::Uhj; else if(outmode == ALC_STEREO_HRTF_SOFT) stereomode = StereoEncoding::Hrtf; } device->Flags.set(FrequencyRequest).set(ChannelsRequest).set(SampleTypeRequest); } else { device->Flags.reset(FrequencyRequest).reset(ChannelsRequest).reset(SampleTypeRequest); device->FmtType = DevFmtTypeDefault; device->FmtChans = DevFmtChannelsDefault; device->mAmbiOrder = 0; device->BufferSize = DEFAULT_UPDATE_SIZE * DEFAULT_NUM_UPDATES; device->UpdateSize = DEFAULT_UPDATE_SIZE; device->Frequency = DEFAULT_OUTPUT_RATE; freq = device->configValue(nullptr, "frequency").value_or(freq); if(freq > 0) { freq = clampu(freq, MIN_OUTPUT_RATE, MAX_OUTPUT_RATE); const double scale{static_cast(freq) / device->Frequency}; device->UpdateSize = static_cast(device->UpdateSize*scale + 0.5); device->BufferSize = static_cast(device->BufferSize*scale + 0.5); device->Frequency = freq; device->Flags.set(FrequencyRequest); } auto set_device_mode = [device](DevFmtChannels chans) noexcept { device->FmtChans = chans; device->Flags.set(ChannelsRequest); }; if(opthrtf) { if(*opthrtf) { set_device_mode(DevFmtStereo); stereomode = StereoEncoding::Hrtf; } else stereomode = StereoEncoding::Default; } using OutputMode = ALCdevice::OutputMode; switch(OutputMode(outmode)) { case OutputMode::Any: break; case OutputMode::Mono: set_device_mode(DevFmtMono); break; case OutputMode::Stereo: set_device_mode(DevFmtStereo); break; case OutputMode::StereoBasic: set_device_mode(DevFmtStereo); stereomode = StereoEncoding::Basic; break; case OutputMode::Uhj2: set_device_mode(DevFmtStereo); stereomode = StereoEncoding::Uhj; break; case OutputMode::Hrtf: set_device_mode(DevFmtStereo); stereomode = StereoEncoding::Hrtf; break; case OutputMode::Quad: set_device_mode(DevFmtQuad); break; case OutputMode::X51: set_device_mode(DevFmtX51); break; case OutputMode::X61: set_device_mode(DevFmtX61); break; case OutputMode::X71: set_device_mode(DevFmtX71); break; } } } if(device->Flags.test(DeviceRunning)) return ALC_NO_ERROR; device->AvgSpeakerDist = 0.0f; device->mNFCtrlFilter = NfcFilter{}; device->mUhjEncoder = nullptr; device->AmbiDecoder = nullptr; device->Bs2b = nullptr; device->PostProcess = nullptr; device->Limiter = nullptr; device->ChannelDelays = nullptr; std::fill(std::begin(device->HrtfAccumData), std::end(device->HrtfAccumData), float2{}); device->Dry.AmbiMap.fill(BFChannelConfig{}); device->Dry.Buffer = {}; std::fill(std::begin(device->NumChannelsPerOrder), std::end(device->NumChannelsPerOrder), 0u); device->RealOut.RemixMap = {}; device->RealOut.ChannelIndex.fill(INVALID_CHANNEL_INDEX); device->RealOut.Buffer = {}; device->MixBuffer.clear(); device->MixBuffer.shrink_to_fit(); UpdateClockBase(device); device->FixedLatency = nanoseconds::zero(); device->DitherDepth = 0.0f; device->DitherSeed = DitherRNGSeed; device->mHrtfStatus = ALC_HRTF_DISABLED_SOFT; /************************************************************************* * Update device format request from the user configuration */ if(device->Type != DeviceType::Loopback) { if(auto typeopt = device->configValue(nullptr, "sample-type")) { static constexpr struct TypeMap { const char name[8]; DevFmtType type; } typelist[] = { { "int8", DevFmtByte }, { "uint8", DevFmtUByte }, { "int16", DevFmtShort }, { "uint16", DevFmtUShort }, { "int32", DevFmtInt }, { "uint32", DevFmtUInt }, { "float32", DevFmtFloat }, }; const ALCchar *fmt{typeopt->c_str()}; auto iter = std::find_if(std::begin(typelist), std::end(typelist), [fmt](const TypeMap &entry) -> bool { return al::strcasecmp(entry.name, fmt) == 0; }); if(iter == std::end(typelist)) ERR("Unsupported sample-type: %s\n", fmt); else { device->FmtType = iter->type; device->Flags.set(SampleTypeRequest); } } if(auto chanopt = device->configValue(nullptr, "channels")) { static constexpr struct ChannelMap { const char name[16]; DevFmtChannels chans; uint8_t order; } chanlist[] = { { "mono", DevFmtMono, 0 }, { "stereo", DevFmtStereo, 0 }, { "quad", DevFmtQuad, 0 }, { "surround51", DevFmtX51, 0 }, { "surround61", DevFmtX61, 0 }, { "surround71", DevFmtX71, 0 }, { "surround3d71", DevFmtX3D71, 0 }, { "surround51rear", DevFmtX51, 0 }, { "ambi1", DevFmtAmbi3D, 1 }, { "ambi2", DevFmtAmbi3D, 2 }, { "ambi3", DevFmtAmbi3D, 3 }, }; const ALCchar *fmt{chanopt->c_str()}; auto iter = std::find_if(std::begin(chanlist), std::end(chanlist), [fmt](const ChannelMap &entry) -> bool { return al::strcasecmp(entry.name, fmt) == 0; }); if(iter == std::end(chanlist)) ERR("Unsupported channels: %s\n", fmt); else { device->FmtChans = iter->chans; device->mAmbiOrder = iter->order; device->Flags.set(ChannelsRequest); } } if(auto ambiopt = device->configValue(nullptr, "ambi-format")) { const ALCchar *fmt{ambiopt->c_str()}; if(al::strcasecmp(fmt, "fuma") == 0) { if(device->mAmbiOrder > 3) ERR("FuMa is incompatible with %d%s order ambisonics (up to 3rd order only)\n", device->mAmbiOrder, (((device->mAmbiOrder%100)/10) == 1) ? "th" : ((device->mAmbiOrder%10) == 1) ? "st" : ((device->mAmbiOrder%10) == 2) ? "nd" : ((device->mAmbiOrder%10) == 3) ? "rd" : "th"); else { device->mAmbiLayout = DevAmbiLayout::FuMa; device->mAmbiScale = DevAmbiScaling::FuMa; } } else if(al::strcasecmp(fmt, "acn+fuma") == 0) { if(device->mAmbiOrder > 3) ERR("FuMa is incompatible with %d%s order ambisonics (up to 3rd order only)\n", device->mAmbiOrder, (((device->mAmbiOrder%100)/10) == 1) ? "th" : ((device->mAmbiOrder%10) == 1) ? "st" : ((device->mAmbiOrder%10) == 2) ? "nd" : ((device->mAmbiOrder%10) == 3) ? "rd" : "th"); else { device->mAmbiLayout = DevAmbiLayout::ACN; device->mAmbiScale = DevAmbiScaling::FuMa; } } else if(al::strcasecmp(fmt, "ambix") == 0 || al::strcasecmp(fmt, "acn+sn3d") == 0) { device->mAmbiLayout = DevAmbiLayout::ACN; device->mAmbiScale = DevAmbiScaling::SN3D; } else if(al::strcasecmp(fmt, "acn+n3d") == 0) { device->mAmbiLayout = DevAmbiLayout::ACN; device->mAmbiScale = DevAmbiScaling::N3D; } else ERR("Unsupported ambi-format: %s\n", fmt); } if(auto persizeopt = device->configValue(nullptr, "period_size")) device->UpdateSize = clampu(*persizeopt, 64, 8192); if(auto peropt = device->configValue(nullptr, "periods")) device->BufferSize = device->UpdateSize * clampu(*peropt, 2, 16); else device->BufferSize = maxu(device->BufferSize, device->UpdateSize*2); if(auto hrtfopt = device->configValue(nullptr, "hrtf")) { const char *hrtf{hrtfopt->c_str()}; if(al::strcasecmp(hrtf, "true") == 0) { stereomode = StereoEncoding::Hrtf; device->FmtChans = DevFmtStereo; device->Flags.set(ChannelsRequest); } else if(al::strcasecmp(hrtf, "false") == 0) { if(!stereomode || *stereomode == StereoEncoding::Hrtf) stereomode = StereoEncoding::Default; } else if(al::strcasecmp(hrtf, "auto") != 0) ERR("Unexpected hrtf value: %s\n", hrtf); } } TRACE("Pre-reset: %s%s, %s%s, %s%uhz, %u / %u buffer\n", device->Flags.test(ChannelsRequest)?"*":"", DevFmtChannelsString(device->FmtChans), device->Flags.test(SampleTypeRequest)?"*":"", DevFmtTypeString(device->FmtType), device->Flags.test(FrequencyRequest)?"*":"", device->Frequency, device->UpdateSize, device->BufferSize); const uint oldFreq{device->Frequency}; const DevFmtChannels oldChans{device->FmtChans}; const DevFmtType oldType{device->FmtType}; try { auto backend = device->Backend.get(); if(!backend->reset()) throw al::backend_exception{al::backend_error::DeviceError, "Device reset failure"}; } catch(std::exception &e) { ERR("Device error: %s\n", e.what()); device->handleDisconnect("%s", e.what()); return ALC_INVALID_DEVICE; } if(device->FmtChans != oldChans && device->Flags.test(ChannelsRequest)) { ERR("Failed to set %s, got %s instead\n", DevFmtChannelsString(oldChans), DevFmtChannelsString(device->FmtChans)); device->Flags.reset(ChannelsRequest); } if(device->FmtType != oldType && device->Flags.test(SampleTypeRequest)) { ERR("Failed to set %s, got %s instead\n", DevFmtTypeString(oldType), DevFmtTypeString(device->FmtType)); device->Flags.reset(SampleTypeRequest); } if(device->Frequency != oldFreq && device->Flags.test(FrequencyRequest)) { WARN("Failed to set %uhz, got %uhz instead\n", oldFreq, device->Frequency); device->Flags.reset(FrequencyRequest); } TRACE("Post-reset: %s, %s, %uhz, %u / %u buffer\n", DevFmtChannelsString(device->FmtChans), DevFmtTypeString(device->FmtType), device->Frequency, device->UpdateSize, device->BufferSize); if(device->Type != DeviceType::Loopback) { if(auto modeopt = device->configValue(nullptr, "stereo-mode")) { const char *mode{modeopt->c_str()}; if(al::strcasecmp(mode, "headphones") == 0) device->Flags.set(DirectEar); else if(al::strcasecmp(mode, "speakers") == 0) device->Flags.reset(DirectEar); else if(al::strcasecmp(mode, "auto") != 0) ERR("Unexpected stereo-mode: %s\n", mode); } if(auto encopt = device->configValue(nullptr, "stereo-encoding")) { const char *mode{encopt->c_str()}; if(al::strcasecmp(mode, "panpot") == 0) stereomode = al::make_optional(StereoEncoding::Basic); else if(al::strcasecmp(mode, "uhj") == 0) stereomode = al::make_optional(StereoEncoding::Uhj); else if(al::strcasecmp(mode, "hrtf") == 0) stereomode = al::make_optional(StereoEncoding::Hrtf); else ERR("Unexpected stereo-encoding: %s\n", mode); } } aluInitRenderer(device, hrtf_id, stereomode); TRACE("Max sources: %d (%d + %d), effect slots: %d, sends: %d\n", device->SourcesMax, device->NumMonoSources, device->NumStereoSources, device->AuxiliaryEffectSlotMax, device->NumAuxSends); switch(device->FmtChans) { case DevFmtMono: break; case DevFmtStereo: if(!device->mUhjEncoder) device->RealOut.RemixMap = StereoDownmix; break; case DevFmtQuad: device->RealOut.RemixMap = QuadDownmix; break; case DevFmtX51: device->RealOut.RemixMap = X51Downmix; break; case DevFmtX61: device->RealOut.RemixMap = X61Downmix; break; case DevFmtX71: device->RealOut.RemixMap = X71Downmix; break; case DevFmtX3D71: device->RealOut.RemixMap = X51Downmix; break; case DevFmtAmbi3D: break; } nanoseconds::rep sample_delay{0}; if(auto *encoder{device->mUhjEncoder.get()}) sample_delay += encoder->getDelay(); if(auto *ambidec = device->AmbiDecoder.get()) { if(ambidec->hasStablizer()) sample_delay += FrontStablizer::DelayLength; } if(device->getConfigValueBool(nullptr, "dither", true)) { int depth{device->configValue(nullptr, "dither-depth").value_or(0)}; if(depth <= 0) { switch(device->FmtType) { case DevFmtByte: case DevFmtUByte: depth = 8; break; case DevFmtShort: case DevFmtUShort: depth = 16; break; case DevFmtInt: case DevFmtUInt: case DevFmtFloat: break; } } if(depth > 0) { depth = clampi(depth, 2, 24); device->DitherDepth = std::pow(2.0f, static_cast(depth-1)); } } if(!(device->DitherDepth > 0.0f)) TRACE("Dithering disabled\n"); else TRACE("Dithering enabled (%d-bit, %g)\n", float2int(std::log2(device->DitherDepth)+0.5f)+1, device->DitherDepth); if(auto limopt = device->configValue(nullptr, "output-limiter")) optlimit = limopt; /* If the gain limiter is unset, use the limiter for integer-based output * (where samples must be clamped), and don't for floating-point (which can * take unclamped samples). */ if(!optlimit) { switch(device->FmtType) { case DevFmtByte: case DevFmtUByte: case DevFmtShort: case DevFmtUShort: case DevFmtInt: case DevFmtUInt: optlimit = true; break; case DevFmtFloat: break; } } if(optlimit.value_or(false) == false) TRACE("Output limiter disabled\n"); else { float thrshld{1.0f}; switch(device->FmtType) { case DevFmtByte: case DevFmtUByte: thrshld = 127.0f / 128.0f; break; case DevFmtShort: case DevFmtUShort: thrshld = 32767.0f / 32768.0f; break; case DevFmtInt: case DevFmtUInt: case DevFmtFloat: break; } if(device->DitherDepth > 0.0f) thrshld -= 1.0f / device->DitherDepth; const float thrshld_dB{std::log10(thrshld) * 20.0f}; auto limiter = CreateDeviceLimiter(device, thrshld_dB); sample_delay += limiter->getLookAhead(); device->Limiter = std::move(limiter); TRACE("Output limiter enabled, %.4fdB limit\n", thrshld_dB); } /* Convert the sample delay from samples to nanosamples to nanoseconds. */ device->FixedLatency += nanoseconds{seconds{sample_delay}} / device->Frequency; TRACE("Fixed device latency: %" PRId64 "ns\n", int64_t{device->FixedLatency.count()}); FPUCtl mixer_mode{}; for(ContextBase *ctxbase : *device->mContexts.load()) { auto *context = static_cast(ctxbase); auto GetEffectBuffer = [](ALbuffer *buffer) noexcept -> EffectState::Buffer { if(!buffer) return EffectState::Buffer{}; return EffectState::Buffer{buffer, buffer->mData}; }; std::unique_lock proplock{context->mPropLock}; std::unique_lock slotlock{context->mEffectSlotLock}; /* Clear out unused effect slot clusters. */ auto slot_cluster_not_in_use = [](ContextBase::EffectSlotCluster &cluster) { for(size_t i{0};i < ContextBase::EffectSlotClusterSize;++i) { if(cluster[i].InUse) return false; } return true; }; auto slotcluster_iter = std::remove_if(context->mEffectSlotClusters.begin(), context->mEffectSlotClusters.end(), slot_cluster_not_in_use); context->mEffectSlotClusters.erase(slotcluster_iter, context->mEffectSlotClusters.end()); /* Free all wet buffers. Any in use will be reallocated with an updated * configuration in aluInitEffectPanning. */ for(auto&& slots : context->mEffectSlotClusters) { for(size_t i{0};i < ContextBase::EffectSlotClusterSize;++i) { slots[i].mWetBuffer.clear(); slots[i].mWetBuffer.shrink_to_fit(); slots[i].Wet.Buffer = {}; } } if(ALeffectslot *slot{context->mDefaultSlot.get()}) { aluInitEffectPanning(slot->mSlot, context); EffectState *state{slot->Effect.State.get()}; state->mOutTarget = device->Dry.Buffer; state->deviceUpdate(device, GetEffectBuffer(slot->Buffer)); slot->updateProps(context); } if(EffectSlotArray *curarray{context->mActiveAuxSlots.load(std::memory_order_relaxed)}) std::fill_n(curarray->end(), curarray->size(), nullptr); for(auto &sublist : context->mEffectSlotList) { uint64_t usemask{~sublist.FreeMask}; while(usemask) { const int idx{al::countr_zero(usemask)}; ALeffectslot *slot{sublist.EffectSlots + idx}; usemask &= ~(1_u64 << idx); aluInitEffectPanning(slot->mSlot, context); EffectState *state{slot->Effect.State.get()}; state->mOutTarget = device->Dry.Buffer; state->deviceUpdate(device, GetEffectBuffer(slot->Buffer)); slot->updateProps(context); } } slotlock.unlock(); const uint num_sends{device->NumAuxSends}; std::unique_lock srclock{context->mSourceLock}; for(auto &sublist : context->mSourceList) { uint64_t usemask{~sublist.FreeMask}; while(usemask) { const int idx{al::countr_zero(usemask)}; ALsource *source{sublist.Sources + idx}; usemask &= ~(1_u64 << idx); auto clear_send = [](ALsource::SendData &send) -> void { if(send.Slot) DecrementRef(send.Slot->ref); send.Slot = nullptr; send.Gain = 1.0f; send.GainHF = 1.0f; send.HFReference = LOWPASSFREQREF; send.GainLF = 1.0f; send.LFReference = HIGHPASSFREQREF; }; auto send_begin = source->Send.begin() + static_cast(num_sends); std::for_each(send_begin, source->Send.end(), clear_send); source->mPropsDirty = true; } } auto voicelist = context->getVoicesSpan(); for(Voice *voice : voicelist) { /* Clear extraneous property set sends. */ std::fill(std::begin(voice->mProps.Send)+num_sends, std::end(voice->mProps.Send), VoiceProps::SendData{}); std::fill(voice->mSend.begin()+num_sends, voice->mSend.end(), Voice::TargetData{}); for(auto &chandata : voice->mChans) { std::fill(chandata.mWetParams.begin()+num_sends, chandata.mWetParams.end(), SendParams{}); } if(VoicePropsItem *props{voice->mUpdate.exchange(nullptr, std::memory_order_relaxed)}) AtomicReplaceHead(context->mFreeVoiceProps, props); /* Force the voice to stopped if it was stopping. */ Voice::State vstate{Voice::Stopping}; voice->mPlayState.compare_exchange_strong(vstate, Voice::Stopped, std::memory_order_acquire, std::memory_order_acquire); if(voice->mSourceID.load(std::memory_order_relaxed) == 0u) continue; voice->prepare(device); } /* Clear all voice props to let them get allocated again. */ context->mVoicePropClusters.clear(); context->mFreeVoiceProps.store(nullptr, std::memory_order_relaxed); srclock.unlock(); context->mPropsDirty = false; UpdateContextProps(context); UpdateAllSourceProps(context); } mixer_mode.leave(); if(!device->Flags.test(DevicePaused)) { try { auto backend = device->Backend.get(); backend->start(); device->Flags.set(DeviceRunning); } catch(al::backend_exception& e) { ERR("%s\n", e.what()); device->handleDisconnect("%s", e.what()); return ALC_INVALID_DEVICE; } TRACE("Post-start: %s, %s, %uhz, %u / %u buffer\n", DevFmtChannelsString(device->FmtChans), DevFmtTypeString(device->FmtType), device->Frequency, device->UpdateSize, device->BufferSize); } return ALC_NO_ERROR; } /** * Updates device parameters as above, and also first clears the disconnected * status, if set. */ bool ResetDeviceParams(ALCdevice *device, const int *attrList) { /* If the device was disconnected, reset it since we're opened anew. */ if UNLIKELY(!device->Connected.load(std::memory_order_relaxed)) { /* Make sure disconnection is finished before continuing on. */ device->waitForMix(); for(ContextBase *ctxbase : *device->mContexts.load(std::memory_order_acquire)) { auto *ctx = static_cast(ctxbase); if(!ctx->mStopVoicesOnDisconnect.load(std::memory_order_acquire)) continue; /* Clear any pending voice changes and reallocate voices to get a * clean restart. */ std::lock_guard __{ctx->mSourceLock}; auto *vchg = ctx->mCurrentVoiceChange.load(std::memory_order_acquire); while(auto *next = vchg->mNext.load(std::memory_order_acquire)) vchg = next; ctx->mCurrentVoiceChange.store(vchg, std::memory_order_release); ctx->mVoicePropClusters.clear(); ctx->mFreeVoiceProps.store(nullptr, std::memory_order_relaxed); ctx->mVoiceClusters.clear(); ctx->allocVoices(std::max(256, ctx->mActiveVoiceCount.load(std::memory_order_relaxed))); } device->Connected.store(true); } ALCenum err{UpdateDeviceParams(device, attrList)}; if LIKELY(err == ALC_NO_ERROR) return ALC_TRUE; alcSetError(device, err); return ALC_FALSE; } /** Checks if the device handle is valid, and returns a new reference if so. */ DeviceRef VerifyDevice(ALCdevice *device) { std::lock_guard _{ListLock}; auto iter = std::lower_bound(DeviceList.begin(), DeviceList.end(), device); if(iter != DeviceList.end() && *iter == device) { (*iter)->add_ref(); return DeviceRef{*iter}; } return nullptr; } /** * Checks if the given context is valid, returning a new reference to it if so. */ ContextRef VerifyContext(ALCcontext *context) { std::lock_guard _{ListLock}; auto iter = std::lower_bound(ContextList.begin(), ContextList.end(), context); if(iter != ContextList.end() && *iter == context) { (*iter)->add_ref(); return ContextRef{*iter}; } return nullptr; } } // namespace /** Returns a new reference to the currently active context for this thread. */ ContextRef GetContextRef(void) { ALCcontext *context{ALCcontext::getThreadContext()}; if(context) context->add_ref(); else { std::lock_guard _{ListLock}; context = ALCcontext::sGlobalContext.load(std::memory_order_acquire); if(context) context->add_ref(); } return ContextRef{context}; } /************************************************ * Standard ALC functions ************************************************/ ALC_API ALCenum ALC_APIENTRY alcGetError(ALCdevice *device) START_API_FUNC { DeviceRef dev{VerifyDevice(device)}; if(dev) return dev->LastError.exchange(ALC_NO_ERROR); return LastNullDeviceError.exchange(ALC_NO_ERROR); } END_API_FUNC ALC_API void ALC_APIENTRY alcSuspendContext(ALCcontext *context) START_API_FUNC { if(!SuspendDefers) return; ContextRef ctx{VerifyContext(context)}; if(!ctx) alcSetError(nullptr, ALC_INVALID_CONTEXT); else { std::lock_guard _{ctx->mPropLock}; ctx->deferUpdates(); } } END_API_FUNC ALC_API void ALC_APIENTRY alcProcessContext(ALCcontext *context) START_API_FUNC { if(!SuspendDefers) return; ContextRef ctx{VerifyContext(context)}; if(!ctx) alcSetError(nullptr, ALC_INVALID_CONTEXT); else { std::lock_guard _{ctx->mPropLock}; ctx->processUpdates(); } } END_API_FUNC ALC_API const ALCchar* ALC_APIENTRY alcGetString(ALCdevice *Device, ALCenum param) START_API_FUNC { const ALCchar *value{nullptr}; switch(param) { case ALC_NO_ERROR: value = alcNoError; break; case ALC_INVALID_ENUM: value = alcErrInvalidEnum; break; case ALC_INVALID_VALUE: value = alcErrInvalidValue; break; case ALC_INVALID_DEVICE: value = alcErrInvalidDevice; break; case ALC_INVALID_CONTEXT: value = alcErrInvalidContext; break; case ALC_OUT_OF_MEMORY: value = alcErrOutOfMemory; break; case ALC_DEVICE_SPECIFIER: value = alcDefaultName; break; case ALC_ALL_DEVICES_SPECIFIER: if(DeviceRef dev{VerifyDevice(Device)}) { if(dev->Type == DeviceType::Capture) alcSetError(dev.get(), ALC_INVALID_ENUM); else if(dev->Type == DeviceType::Loopback) value = alcDefaultName; else { std::lock_guard _{dev->StateLock}; value = dev->DeviceName.c_str(); } } else { ProbeAllDevicesList(); value = alcAllDevicesList.c_str(); } break; case ALC_CAPTURE_DEVICE_SPECIFIER: if(DeviceRef dev{VerifyDevice(Device)}) { if(dev->Type != DeviceType::Capture) alcSetError(dev.get(), ALC_INVALID_ENUM); else { std::lock_guard _{dev->StateLock}; value = dev->DeviceName.c_str(); } } else { ProbeCaptureDeviceList(); value = alcCaptureDeviceList.c_str(); } break; /* Default devices are always first in the list */ case ALC_DEFAULT_DEVICE_SPECIFIER: value = alcDefaultName; break; case ALC_DEFAULT_ALL_DEVICES_SPECIFIER: if(alcAllDevicesList.empty()) ProbeAllDevicesList(); /* Copy first entry as default. */ alcDefaultAllDevicesSpecifier = alcAllDevicesList.c_str(); value = alcDefaultAllDevicesSpecifier.c_str(); break; case ALC_CAPTURE_DEFAULT_DEVICE_SPECIFIER: if(alcCaptureDeviceList.empty()) ProbeCaptureDeviceList(); /* Copy first entry as default. */ alcCaptureDefaultDeviceSpecifier = alcCaptureDeviceList.c_str(); value = alcCaptureDefaultDeviceSpecifier.c_str(); break; case ALC_EXTENSIONS: if(VerifyDevice(Device)) value = alcExtensionList; else value = alcNoDeviceExtList; break; case ALC_HRTF_SPECIFIER_SOFT: if(DeviceRef dev{VerifyDevice(Device)}) { std::lock_guard _{dev->StateLock}; value = (dev->mHrtf ? dev->mHrtfName.c_str() : ""); } else alcSetError(nullptr, ALC_INVALID_DEVICE); break; default: alcSetError(VerifyDevice(Device).get(), ALC_INVALID_ENUM); break; } return value; } END_API_FUNC static size_t GetIntegerv(ALCdevice *device, ALCenum param, const al::span values) { size_t i; if(values.empty()) { alcSetError(device, ALC_INVALID_VALUE); return 0; } if(!device) { switch(param) { case ALC_MAJOR_VERSION: values[0] = alcMajorVersion; return 1; case ALC_MINOR_VERSION: values[0] = alcMinorVersion; return 1; case ALC_EFX_MAJOR_VERSION: values[0] = alcEFXMajorVersion; return 1; case ALC_EFX_MINOR_VERSION: values[0] = alcEFXMinorVersion; return 1; case ALC_MAX_AUXILIARY_SENDS: values[0] = MAX_SENDS; return 1; case ALC_ATTRIBUTES_SIZE: case ALC_ALL_ATTRIBUTES: case ALC_FREQUENCY: case ALC_REFRESH: case ALC_SYNC: case ALC_MONO_SOURCES: case ALC_STEREO_SOURCES: case ALC_CAPTURE_SAMPLES: case ALC_FORMAT_CHANNELS_SOFT: case ALC_FORMAT_TYPE_SOFT: case ALC_AMBISONIC_LAYOUT_SOFT: case ALC_AMBISONIC_SCALING_SOFT: case ALC_AMBISONIC_ORDER_SOFT: case ALC_MAX_AMBISONIC_ORDER_SOFT: alcSetError(nullptr, ALC_INVALID_DEVICE); return 0; default: alcSetError(nullptr, ALC_INVALID_ENUM); } return 0; } std::lock_guard _{device->StateLock}; if(device->Type == DeviceType::Capture) { static constexpr int MaxCaptureAttributes{9}; switch(param) { case ALC_ATTRIBUTES_SIZE: values[0] = MaxCaptureAttributes; return 1; case ALC_ALL_ATTRIBUTES: i = 0; if(values.size() < MaxCaptureAttributes) alcSetError(device, ALC_INVALID_VALUE); else { values[i++] = ALC_MAJOR_VERSION; values[i++] = alcMajorVersion; values[i++] = ALC_MINOR_VERSION; values[i++] = alcMinorVersion; values[i++] = ALC_CAPTURE_SAMPLES; values[i++] = static_cast(device->Backend->availableSamples()); values[i++] = ALC_CONNECTED; values[i++] = device->Connected.load(std::memory_order_relaxed); values[i++] = 0; assert(i == MaxCaptureAttributes); } return i; case ALC_MAJOR_VERSION: values[0] = alcMajorVersion; return 1; case ALC_MINOR_VERSION: values[0] = alcMinorVersion; return 1; case ALC_CAPTURE_SAMPLES: values[0] = static_cast(device->Backend->availableSamples()); return 1; case ALC_CONNECTED: values[0] = device->Connected.load(std::memory_order_acquire); return 1; default: alcSetError(device, ALC_INVALID_ENUM); } return 0; } /* render device */ auto NumAttrsForDevice = [](ALCdevice *aldev) noexcept { if(aldev->Type == DeviceType::Loopback && aldev->FmtChans == DevFmtAmbi3D) return 37; return 31; }; switch(param) { case ALC_ATTRIBUTES_SIZE: values[0] = NumAttrsForDevice(device); return 1; case ALC_ALL_ATTRIBUTES: i = 0; if(values.size() < static_cast(NumAttrsForDevice(device))) alcSetError(device, ALC_INVALID_VALUE); else { values[i++] = ALC_MAJOR_VERSION; values[i++] = alcMajorVersion; values[i++] = ALC_MINOR_VERSION; values[i++] = alcMinorVersion; values[i++] = ALC_EFX_MAJOR_VERSION; values[i++] = alcEFXMajorVersion; values[i++] = ALC_EFX_MINOR_VERSION; values[i++] = alcEFXMinorVersion; values[i++] = ALC_FREQUENCY; values[i++] = static_cast(device->Frequency); if(device->Type != DeviceType::Loopback) { values[i++] = ALC_REFRESH; values[i++] = static_cast(device->Frequency / device->UpdateSize); values[i++] = ALC_SYNC; values[i++] = ALC_FALSE; } else { if(device->FmtChans == DevFmtAmbi3D) { values[i++] = ALC_AMBISONIC_LAYOUT_SOFT; values[i++] = EnumFromDevAmbi(device->mAmbiLayout); values[i++] = ALC_AMBISONIC_SCALING_SOFT; values[i++] = EnumFromDevAmbi(device->mAmbiScale); values[i++] = ALC_AMBISONIC_ORDER_SOFT; values[i++] = static_cast(device->mAmbiOrder); } values[i++] = ALC_FORMAT_CHANNELS_SOFT; values[i++] = EnumFromDevFmt(device->FmtChans); values[i++] = ALC_FORMAT_TYPE_SOFT; values[i++] = EnumFromDevFmt(device->FmtType); } values[i++] = ALC_MONO_SOURCES; values[i++] = static_cast(device->NumMonoSources); values[i++] = ALC_STEREO_SOURCES; values[i++] = static_cast(device->NumStereoSources); values[i++] = ALC_MAX_AUXILIARY_SENDS; values[i++] = static_cast(device->NumAuxSends); values[i++] = ALC_HRTF_SOFT; values[i++] = (device->mHrtf ? ALC_TRUE : ALC_FALSE); values[i++] = ALC_HRTF_STATUS_SOFT; values[i++] = device->mHrtfStatus; values[i++] = ALC_OUTPUT_LIMITER_SOFT; values[i++] = device->Limiter ? ALC_TRUE : ALC_FALSE; values[i++] = ALC_MAX_AMBISONIC_ORDER_SOFT; values[i++] = MaxAmbiOrder; values[i++] = ALC_OUTPUT_MODE_SOFT; values[i++] = static_cast(device->getOutputMode1()); values[i++] = 0; } return i; case ALC_MAJOR_VERSION: values[0] = alcMajorVersion; return 1; case ALC_MINOR_VERSION: values[0] = alcMinorVersion; return 1; case ALC_EFX_MAJOR_VERSION: values[0] = alcEFXMajorVersion; return 1; case ALC_EFX_MINOR_VERSION: values[0] = alcEFXMinorVersion; return 1; case ALC_FREQUENCY: values[0] = static_cast(device->Frequency); return 1; case ALC_REFRESH: if(device->Type == DeviceType::Loopback) { alcSetError(device, ALC_INVALID_DEVICE); return 0; } values[0] = static_cast(device->Frequency / device->UpdateSize); return 1; case ALC_SYNC: if(device->Type == DeviceType::Loopback) { alcSetError(device, ALC_INVALID_DEVICE); return 0; } values[0] = ALC_FALSE; return 1; case ALC_FORMAT_CHANNELS_SOFT: if(device->Type != DeviceType::Loopback) { alcSetError(device, ALC_INVALID_DEVICE); return 0; } values[0] = EnumFromDevFmt(device->FmtChans); return 1; case ALC_FORMAT_TYPE_SOFT: if(device->Type != DeviceType::Loopback) { alcSetError(device, ALC_INVALID_DEVICE); return 0; } values[0] = EnumFromDevFmt(device->FmtType); return 1; case ALC_AMBISONIC_LAYOUT_SOFT: if(device->Type != DeviceType::Loopback || device->FmtChans != DevFmtAmbi3D) { alcSetError(device, ALC_INVALID_DEVICE); return 0; } values[0] = EnumFromDevAmbi(device->mAmbiLayout); return 1; case ALC_AMBISONIC_SCALING_SOFT: if(device->Type != DeviceType::Loopback || device->FmtChans != DevFmtAmbi3D) { alcSetError(device, ALC_INVALID_DEVICE); return 0; } values[0] = EnumFromDevAmbi(device->mAmbiScale); return 1; case ALC_AMBISONIC_ORDER_SOFT: if(device->Type != DeviceType::Loopback || device->FmtChans != DevFmtAmbi3D) { alcSetError(device, ALC_INVALID_DEVICE); return 0; } values[0] = static_cast(device->mAmbiOrder); return 1; case ALC_MONO_SOURCES: values[0] = static_cast(device->NumMonoSources); return 1; case ALC_STEREO_SOURCES: values[0] = static_cast(device->NumStereoSources); return 1; case ALC_MAX_AUXILIARY_SENDS: values[0] = static_cast(device->NumAuxSends); return 1; case ALC_CONNECTED: values[0] = device->Connected.load(std::memory_order_acquire); return 1; case ALC_HRTF_SOFT: values[0] = (device->mHrtf ? ALC_TRUE : ALC_FALSE); return 1; case ALC_HRTF_STATUS_SOFT: values[0] = device->mHrtfStatus; return 1; case ALC_NUM_HRTF_SPECIFIERS_SOFT: device->enumerateHrtfs(); values[0] = static_cast(minz(device->mHrtfList.size(), std::numeric_limits::max())); return 1; case ALC_OUTPUT_LIMITER_SOFT: values[0] = device->Limiter ? ALC_TRUE : ALC_FALSE; return 1; case ALC_MAX_AMBISONIC_ORDER_SOFT: values[0] = MaxAmbiOrder; return 1; case ALC_OUTPUT_MODE_SOFT: values[0] = static_cast(device->getOutputMode1()); return 1; default: alcSetError(device, ALC_INVALID_ENUM); } return 0; } ALC_API void ALC_APIENTRY alcGetIntegerv(ALCdevice *device, ALCenum param, ALCsizei size, ALCint *values) START_API_FUNC { DeviceRef dev{VerifyDevice(device)}; if(size <= 0 || values == nullptr) alcSetError(dev.get(), ALC_INVALID_VALUE); else GetIntegerv(dev.get(), param, {values, static_cast(size)}); } END_API_FUNC ALC_API void ALC_APIENTRY alcGetInteger64vSOFT(ALCdevice *device, ALCenum pname, ALCsizei size, ALCint64SOFT *values) START_API_FUNC { DeviceRef dev{VerifyDevice(device)}; if(size <= 0 || values == nullptr) { alcSetError(dev.get(), ALC_INVALID_VALUE); return; } if(!dev || dev->Type == DeviceType::Capture) { auto ivals = al::vector(static_cast(size)); if(size_t got{GetIntegerv(dev.get(), pname, ivals)}) std::copy_n(ivals.begin(), got, values); return; } /* render device */ auto NumAttrsForDevice = [](ALCdevice *aldev) noexcept { if(aldev->Type == DeviceType::Loopback && aldev->FmtChans == DevFmtAmbi3D) return 41; return 35; }; std::lock_guard _{dev->StateLock}; switch(pname) { case ALC_ATTRIBUTES_SIZE: *values = NumAttrsForDevice(dev.get()); break; case ALC_ALL_ATTRIBUTES: if(size < NumAttrsForDevice(dev.get())) alcSetError(dev.get(), ALC_INVALID_VALUE); else { size_t i{0}; values[i++] = ALC_FREQUENCY; values[i++] = dev->Frequency; if(dev->Type != DeviceType::Loopback) { values[i++] = ALC_REFRESH; values[i++] = dev->Frequency / dev->UpdateSize; values[i++] = ALC_SYNC; values[i++] = ALC_FALSE; } else { values[i++] = ALC_FORMAT_CHANNELS_SOFT; values[i++] = EnumFromDevFmt(dev->FmtChans); values[i++] = ALC_FORMAT_TYPE_SOFT; values[i++] = EnumFromDevFmt(dev->FmtType); if(dev->FmtChans == DevFmtAmbi3D) { values[i++] = ALC_AMBISONIC_LAYOUT_SOFT; values[i++] = EnumFromDevAmbi(dev->mAmbiLayout); values[i++] = ALC_AMBISONIC_SCALING_SOFT; values[i++] = EnumFromDevAmbi(dev->mAmbiScale); values[i++] = ALC_AMBISONIC_ORDER_SOFT; values[i++] = dev->mAmbiOrder; } } values[i++] = ALC_MONO_SOURCES; values[i++] = dev->NumMonoSources; values[i++] = ALC_STEREO_SOURCES; values[i++] = dev->NumStereoSources; values[i++] = ALC_MAX_AUXILIARY_SENDS; values[i++] = dev->NumAuxSends; values[i++] = ALC_HRTF_SOFT; values[i++] = (dev->mHrtf ? ALC_TRUE : ALC_FALSE); values[i++] = ALC_HRTF_STATUS_SOFT; values[i++] = dev->mHrtfStatus; values[i++] = ALC_OUTPUT_LIMITER_SOFT; values[i++] = dev->Limiter ? ALC_TRUE : ALC_FALSE; ClockLatency clock{GetClockLatency(dev.get(), dev->Backend.get())}; values[i++] = ALC_DEVICE_CLOCK_SOFT; values[i++] = clock.ClockTime.count(); values[i++] = ALC_DEVICE_LATENCY_SOFT; values[i++] = clock.Latency.count(); values[i++] = ALC_OUTPUT_MODE_SOFT; values[i++] = static_cast(device->getOutputMode1()); values[i++] = 0; } break; case ALC_DEVICE_CLOCK_SOFT: { uint samplecount, refcount; nanoseconds basecount; do { refcount = dev->waitForMix(); basecount = dev->ClockBase; samplecount = dev->SamplesDone; } while(refcount != ReadRef(dev->MixCount)); basecount += nanoseconds{seconds{samplecount}} / dev->Frequency; *values = basecount.count(); } break; case ALC_DEVICE_LATENCY_SOFT: *values = GetClockLatency(dev.get(), dev->Backend.get()).Latency.count(); break; case ALC_DEVICE_CLOCK_LATENCY_SOFT: if(size < 2) alcSetError(dev.get(), ALC_INVALID_VALUE); else { ClockLatency clock{GetClockLatency(dev.get(), dev->Backend.get())}; values[0] = clock.ClockTime.count(); values[1] = clock.Latency.count(); } break; default: auto ivals = al::vector(static_cast(size)); if(size_t got{GetIntegerv(dev.get(), pname, ivals)}) std::copy_n(ivals.begin(), got, values); break; } } END_API_FUNC ALC_API ALCboolean ALC_APIENTRY alcIsExtensionPresent(ALCdevice *device, const ALCchar *extName) START_API_FUNC { DeviceRef dev{VerifyDevice(device)}; if(!extName) alcSetError(dev.get(), ALC_INVALID_VALUE); else { size_t len = strlen(extName); const char *ptr = (dev ? alcExtensionList : alcNoDeviceExtList); while(ptr && *ptr) { if(al::strncasecmp(ptr, extName, len) == 0 && (ptr[len] == '\0' || isspace(ptr[len]))) return ALC_TRUE; if((ptr=strchr(ptr, ' ')) != nullptr) { do { ++ptr; } while(isspace(*ptr)); } } } return ALC_FALSE; } END_API_FUNC ALC_API ALCvoid* ALC_APIENTRY alcGetProcAddress(ALCdevice *device, const ALCchar *funcName) START_API_FUNC { if(!funcName) { DeviceRef dev{VerifyDevice(device)}; alcSetError(dev.get(), ALC_INVALID_VALUE); return nullptr; } #ifdef ALSOFT_EAX if(eax_g_is_enabled) { for(const auto &func : eaxFunctions) { if(strcmp(func.funcName, funcName) == 0) return func.address; } } #endif for(const auto &func : alcFunctions) { if(strcmp(func.funcName, funcName) == 0) return func.address; } return nullptr; } END_API_FUNC ALC_API ALCenum ALC_APIENTRY alcGetEnumValue(ALCdevice *device, const ALCchar *enumName) START_API_FUNC { if(!enumName) { DeviceRef dev{VerifyDevice(device)}; alcSetError(dev.get(), ALC_INVALID_VALUE); return 0; } #ifdef ALSOFT_EAX if(eax_g_is_enabled) { for(const auto &enm : eaxEnumerations) { if(strcmp(enm.enumName, enumName) == 0) return enm.value; } } #endif for(const auto &enm : alcEnumerations) { if(strcmp(enm.enumName, enumName) == 0) return enm.value; } return 0; } END_API_FUNC ALC_API ALCcontext* ALC_APIENTRY alcCreateContext(ALCdevice *device, const ALCint *attrList) START_API_FUNC { /* Explicitly hold the list lock while taking the StateLock in case the * device is asynchronously destroyed, to ensure this new context is * properly cleaned up after being made. */ std::unique_lock listlock{ListLock}; DeviceRef dev{VerifyDevice(device)}; if(!dev || dev->Type == DeviceType::Capture || !dev->Connected.load(std::memory_order_relaxed)) { listlock.unlock(); alcSetError(dev.get(), ALC_INVALID_DEVICE); return nullptr; } std::unique_lock statelock{dev->StateLock}; listlock.unlock(); dev->LastError.store(ALC_NO_ERROR); ALCenum err{UpdateDeviceParams(dev.get(), attrList)}; if(err != ALC_NO_ERROR) { alcSetError(dev.get(), err); return nullptr; } ContextRef context{new ALCcontext{dev}}; context->init(); if(auto volopt = dev->configValue(nullptr, "volume-adjust")) { const float valf{*volopt}; if(!std::isfinite(valf)) ERR("volume-adjust must be finite: %f\n", valf); else { const float db{clampf(valf, -24.0f, 24.0f)}; if(db != valf) WARN("volume-adjust clamped: %f, range: +/-%f\n", valf, 24.0f); context->mGainBoost = std::pow(10.0f, db/20.0f); TRACE("volume-adjust gain: %f\n", context->mGainBoost); } } { using ContextArray = al::FlexArray; /* Allocate a new context array, which holds 1 more than the current/ * old array. */ auto *oldarray = device->mContexts.load(); const size_t newcount{oldarray->size()+1}; std::unique_ptr newarray{ContextArray::Create(newcount)}; /* Copy the current/old context handles to the new array, appending the * new context. */ auto iter = std::copy(oldarray->begin(), oldarray->end(), newarray->begin()); *iter = context.get(); /* Store the new context array in the device. Wait for any current mix * to finish before deleting the old array. */ dev->mContexts.store(newarray.release()); if(oldarray != &DeviceBase::sEmptyContextArray) { dev->waitForMix(); delete oldarray; } } statelock.unlock(); { std::lock_guard _{ListLock}; auto iter = std::lower_bound(ContextList.cbegin(), ContextList.cend(), context.get()); ContextList.emplace(iter, context.get()); } if(ALeffectslot *slot{context->mDefaultSlot.get()}) { ALenum sloterr{slot->initEffect(ALCcontext::sDefaultEffect.type, ALCcontext::sDefaultEffect.Props, context.get())}; if(sloterr == AL_NO_ERROR) slot->updateProps(context.get()); else ERR("Failed to initialize the default effect\n"); } TRACE("Created context %p\n", voidp{context.get()}); return context.release(); } END_API_FUNC ALC_API void ALC_APIENTRY alcDestroyContext(ALCcontext *context) START_API_FUNC { std::unique_lock listlock{ListLock}; auto iter = std::lower_bound(ContextList.begin(), ContextList.end(), context); if(iter == ContextList.end() || *iter != context) { listlock.unlock(); alcSetError(nullptr, ALC_INVALID_CONTEXT); return; } /* Hold a reference to this context so it remains valid until the ListLock * is released. */ ContextRef ctx{*iter}; ContextList.erase(iter); ALCdevice *Device{ctx->mALDevice.get()}; std::lock_guard _{Device->StateLock}; if(!ctx->deinit() && Device->Flags.test(DeviceRunning)) { Device->Backend->stop(); Device->Flags.reset(DeviceRunning); } } END_API_FUNC ALC_API ALCcontext* ALC_APIENTRY alcGetCurrentContext(void) START_API_FUNC { ALCcontext *Context{ALCcontext::getThreadContext()}; if(!Context) Context = ALCcontext::sGlobalContext.load(); return Context; } END_API_FUNC /** Returns the currently active thread-local context. */ ALC_API ALCcontext* ALC_APIENTRY alcGetThreadContext(void) START_API_FUNC { return ALCcontext::getThreadContext(); } END_API_FUNC ALC_API ALCboolean ALC_APIENTRY alcMakeContextCurrent(ALCcontext *context) START_API_FUNC { /* context must be valid or nullptr */ ContextRef ctx; if(context) { ctx = VerifyContext(context); if(!ctx) { alcSetError(nullptr, ALC_INVALID_CONTEXT); return ALC_FALSE; } } /* Release this reference (if any) to store it in the GlobalContext * pointer. Take ownership of the reference (if any) that was previously * stored there. */ ctx = ContextRef{ALCcontext::sGlobalContext.exchange(ctx.release())}; /* Reset (decrement) the previous global reference by replacing it with the * thread-local context. Take ownership of the thread-local context * reference (if any), clearing the storage to null. */ ctx = ContextRef{ALCcontext::getThreadContext()}; if(ctx) ALCcontext::setThreadContext(nullptr); /* Reset (decrement) the previous thread-local reference. */ return ALC_TRUE; } END_API_FUNC /** Makes the given context the active context for the current thread. */ ALC_API ALCboolean ALC_APIENTRY alcSetThreadContext(ALCcontext *context) START_API_FUNC { /* context must be valid or nullptr */ ContextRef ctx; if(context) { ctx = VerifyContext(context); if(!ctx) { alcSetError(nullptr, ALC_INVALID_CONTEXT); return ALC_FALSE; } } /* context's reference count is already incremented */ ContextRef old{ALCcontext::getThreadContext()}; ALCcontext::setThreadContext(ctx.release()); return ALC_TRUE; } END_API_FUNC ALC_API ALCdevice* ALC_APIENTRY alcGetContextsDevice(ALCcontext *Context) START_API_FUNC { ContextRef ctx{VerifyContext(Context)}; if(!ctx) { alcSetError(nullptr, ALC_INVALID_CONTEXT); return nullptr; } return ctx->mALDevice.get(); } END_API_FUNC ALC_API ALCdevice* ALC_APIENTRY alcOpenDevice(const ALCchar *deviceName) START_API_FUNC { InitConfig(); if(!PlaybackFactory) { alcSetError(nullptr, ALC_INVALID_VALUE); return nullptr; } if(deviceName) { if(!deviceName[0] || al::strcasecmp(deviceName, alcDefaultName) == 0 #ifdef _WIN32 /* Some old Windows apps hardcode these expecting OpenAL to use a * specific audio API, even when they're not enumerated. Creative's * router effectively ignores them too. */ || al::strcasecmp(deviceName, "DirectSound3D") == 0 || al::strcasecmp(deviceName, "DirectSound") == 0 || al::strcasecmp(deviceName, "MMSYSTEM") == 0 #endif /* Some old Linux apps hardcode configuration strings that were * supported by the OpenAL SI. We can't really do anything useful * with them, so just ignore. */ || (deviceName[0] == '\'' && deviceName[1] == '(') || al::strcasecmp(deviceName, "openal-soft") == 0) deviceName = nullptr; } const uint DefaultSends{ #ifdef ALSOFT_EAX eax_g_is_enabled ? uint{EAX_MAX_FXSLOTS} : #endif // ALSOFT_EAX DEFAULT_SENDS }; DeviceRef device{new ALCdevice{DeviceType::Playback}}; /* Set output format */ device->FmtChans = DevFmtChannelsDefault; device->FmtType = DevFmtTypeDefault; device->Frequency = DEFAULT_OUTPUT_RATE; device->UpdateSize = DEFAULT_UPDATE_SIZE; device->BufferSize = DEFAULT_UPDATE_SIZE * DEFAULT_NUM_UPDATES; device->SourcesMax = 256; device->AuxiliaryEffectSlotMax = 64; device->NumAuxSends = DefaultSends; try { auto backend = PlaybackFactory->createBackend(device.get(), BackendType::Playback); std::lock_guard _{ListLock}; backend->open(deviceName); device->Backend = std::move(backend); } catch(al::backend_exception &e) { WARN("Failed to open playback device: %s\n", e.what()); alcSetError(nullptr, (e.errorCode() == al::backend_error::OutOfMemory) ? ALC_OUT_OF_MEMORY : ALC_INVALID_VALUE); return nullptr; } if(uint freq{device->configValue(nullptr, "frequency").value_or(0u)}) { if(freq < MIN_OUTPUT_RATE || freq > MAX_OUTPUT_RATE) { const uint newfreq{clampu(freq, MIN_OUTPUT_RATE, MAX_OUTPUT_RATE)}; ERR("%uhz request clamped to %uhz\n", freq, newfreq); freq = newfreq; } const double scale{static_cast(freq) / device->Frequency}; device->UpdateSize = static_cast(device->UpdateSize*scale + 0.5); device->BufferSize = static_cast(device->BufferSize*scale + 0.5); device->Frequency = freq; device->Flags.set(FrequencyRequest); } if(auto srcsmax = device->configValue(nullptr, "sources").value_or(0)) device->SourcesMax = srcsmax; if(auto slotsmax = device->configValue(nullptr, "slots").value_or(0)) device->AuxiliaryEffectSlotMax = minu(slotsmax, INT_MAX); if(auto sendsopt = device->configValue(nullptr, "sends")) { const int max_sends{clampi(*sendsopt, 0, MAX_SENDS)}; device->NumAuxSends = minu(DefaultSends, static_cast(max_sends)); } device->NumStereoSources = 1; device->NumMonoSources = device->SourcesMax - device->NumStereoSources; { std::lock_guard _{ListLock}; auto iter = std::lower_bound(DeviceList.cbegin(), DeviceList.cend(), device.get()); DeviceList.emplace(iter, device.get()); } TRACE("Created device %p, \"%s\"\n", voidp{device.get()}, device->DeviceName.c_str()); return device.release(); } END_API_FUNC ALC_API ALCboolean ALC_APIENTRY alcCloseDevice(ALCdevice *device) START_API_FUNC { std::unique_lock listlock{ListLock}; auto iter = std::lower_bound(DeviceList.begin(), DeviceList.end(), device); if(iter == DeviceList.end() || *iter != device) { alcSetError(nullptr, ALC_INVALID_DEVICE); return ALC_FALSE; } if((*iter)->Type == DeviceType::Capture) { alcSetError(*iter, ALC_INVALID_DEVICE); return ALC_FALSE; } /* Erase the device, and any remaining contexts left on it, from their * respective lists. */ DeviceRef dev{*iter}; DeviceList.erase(iter); std::unique_lock statelock{dev->StateLock}; al::vector orphanctxs; for(ContextBase *ctx : *dev->mContexts.load()) { auto ctxiter = std::lower_bound(ContextList.begin(), ContextList.end(), ctx); if(ctxiter != ContextList.end() && *ctxiter == ctx) { orphanctxs.emplace_back(ContextRef{*ctxiter}); ContextList.erase(ctxiter); } } listlock.unlock(); for(ContextRef &context : orphanctxs) { WARN("Releasing orphaned context %p\n", voidp{context.get()}); context->deinit(); } orphanctxs.clear(); if(dev->Flags.test(DeviceRunning)) dev->Backend->stop(); dev->Flags.reset(DeviceRunning); return ALC_TRUE; } END_API_FUNC /************************************************ * ALC capture functions ************************************************/ ALC_API ALCdevice* ALC_APIENTRY alcCaptureOpenDevice(const ALCchar *deviceName, ALCuint frequency, ALCenum format, ALCsizei samples) START_API_FUNC { InitConfig(); if(!CaptureFactory) { alcSetError(nullptr, ALC_INVALID_VALUE); return nullptr; } if(samples <= 0) { alcSetError(nullptr, ALC_INVALID_VALUE); return nullptr; } if(deviceName) { if(!deviceName[0] || al::strcasecmp(deviceName, alcDefaultName) == 0 || al::strcasecmp(deviceName, "openal-soft") == 0) deviceName = nullptr; } DeviceRef device{new ALCdevice{DeviceType::Capture}}; auto decompfmt = DecomposeDevFormat(format); if(!decompfmt) { alcSetError(nullptr, ALC_INVALID_ENUM); return nullptr; } device->Frequency = frequency; device->FmtChans = decompfmt->chans; device->FmtType = decompfmt->type; device->Flags.set(FrequencyRequest); device->Flags.set(ChannelsRequest); device->Flags.set(SampleTypeRequest); device->UpdateSize = static_cast(samples); device->BufferSize = static_cast(samples); try { TRACE("Capture format: %s, %s, %uhz, %u / %u buffer\n", DevFmtChannelsString(device->FmtChans), DevFmtTypeString(device->FmtType), device->Frequency, device->UpdateSize, device->BufferSize); auto backend = CaptureFactory->createBackend(device.get(), BackendType::Capture); std::lock_guard _{ListLock}; backend->open(deviceName); device->Backend = std::move(backend); } catch(al::backend_exception &e) { WARN("Failed to open capture device: %s\n", e.what()); alcSetError(nullptr, (e.errorCode() == al::backend_error::OutOfMemory) ? ALC_OUT_OF_MEMORY : ALC_INVALID_VALUE); return nullptr; } { std::lock_guard _{ListLock}; auto iter = std::lower_bound(DeviceList.cbegin(), DeviceList.cend(), device.get()); DeviceList.emplace(iter, device.get()); } TRACE("Created capture device %p, \"%s\"\n", voidp{device.get()}, device->DeviceName.c_str()); return device.release(); } END_API_FUNC ALC_API ALCboolean ALC_APIENTRY alcCaptureCloseDevice(ALCdevice *device) START_API_FUNC { std::unique_lock listlock{ListLock}; auto iter = std::lower_bound(DeviceList.begin(), DeviceList.end(), device); if(iter == DeviceList.end() || *iter != device) { alcSetError(nullptr, ALC_INVALID_DEVICE); return ALC_FALSE; } if((*iter)->Type != DeviceType::Capture) { alcSetError(*iter, ALC_INVALID_DEVICE); return ALC_FALSE; } DeviceRef dev{*iter}; DeviceList.erase(iter); listlock.unlock(); std::lock_guard _{dev->StateLock}; if(dev->Flags.test(DeviceRunning)) dev->Backend->stop(); dev->Flags.reset(DeviceRunning); return ALC_TRUE; } END_API_FUNC ALC_API void ALC_APIENTRY alcCaptureStart(ALCdevice *device) START_API_FUNC { DeviceRef dev{VerifyDevice(device)}; if(!dev || dev->Type != DeviceType::Capture) { alcSetError(dev.get(), ALC_INVALID_DEVICE); return; } std::lock_guard _{dev->StateLock}; if(!dev->Connected.load(std::memory_order_acquire)) alcSetError(dev.get(), ALC_INVALID_DEVICE); else if(!dev->Flags.test(DeviceRunning)) { try { auto backend = dev->Backend.get(); backend->start(); dev->Flags.set(DeviceRunning); } catch(al::backend_exception& e) { ERR("%s\n", e.what()); dev->handleDisconnect("%s", e.what()); alcSetError(dev.get(), ALC_INVALID_DEVICE); } } } END_API_FUNC ALC_API void ALC_APIENTRY alcCaptureStop(ALCdevice *device) START_API_FUNC { DeviceRef dev{VerifyDevice(device)}; if(!dev || dev->Type != DeviceType::Capture) alcSetError(dev.get(), ALC_INVALID_DEVICE); else { std::lock_guard _{dev->StateLock}; if(dev->Flags.test(DeviceRunning)) dev->Backend->stop(); dev->Flags.reset(DeviceRunning); } } END_API_FUNC ALC_API void ALC_APIENTRY alcCaptureSamples(ALCdevice *device, ALCvoid *buffer, ALCsizei samples) START_API_FUNC { DeviceRef dev{VerifyDevice(device)}; if(!dev || dev->Type != DeviceType::Capture) { alcSetError(dev.get(), ALC_INVALID_DEVICE); return; } if(samples < 0 || (samples > 0 && buffer == nullptr)) { alcSetError(dev.get(), ALC_INVALID_VALUE); return; } if(samples < 1) return; std::lock_guard _{dev->StateLock}; BackendBase *backend{dev->Backend.get()}; const auto usamples = static_cast(samples); if(usamples > backend->availableSamples()) { alcSetError(dev.get(), ALC_INVALID_VALUE); return; } backend->captureSamples(static_cast(buffer), usamples); } END_API_FUNC /************************************************ * ALC loopback functions ************************************************/ /** Open a loopback device, for manual rendering. */ ALC_API ALCdevice* ALC_APIENTRY alcLoopbackOpenDeviceSOFT(const ALCchar *deviceName) START_API_FUNC { InitConfig(); /* Make sure the device name, if specified, is us. */ if(deviceName && strcmp(deviceName, alcDefaultName) != 0) { alcSetError(nullptr, ALC_INVALID_VALUE); return nullptr; } const uint DefaultSends{ #ifdef ALSOFT_EAX eax_g_is_enabled ? uint{EAX_MAX_FXSLOTS} : #endif // ALSOFT_EAX DEFAULT_SENDS }; DeviceRef device{new ALCdevice{DeviceType::Loopback}}; device->SourcesMax = 256; device->AuxiliaryEffectSlotMax = 64; device->NumAuxSends = DefaultSends; //Set output format device->BufferSize = 0; device->UpdateSize = 0; device->Frequency = DEFAULT_OUTPUT_RATE; device->FmtChans = DevFmtChannelsDefault; device->FmtType = DevFmtTypeDefault; if(auto srcsmax = ConfigValueUInt(nullptr, nullptr, "sources").value_or(0)) device->SourcesMax = srcsmax; if(auto slotsmax = ConfigValueUInt(nullptr, nullptr, "slots").value_or(0)) device->AuxiliaryEffectSlotMax = minu(slotsmax, INT_MAX); if(auto sendsopt = ConfigValueInt(nullptr, nullptr, "sends")) { const int max_sends{clampi(*sendsopt, 0, MAX_SENDS)}; device->NumAuxSends = minu(DefaultSends, static_cast(max_sends)); } device->NumStereoSources = 1; device->NumMonoSources = device->SourcesMax - device->NumStereoSources; try { auto backend = LoopbackBackendFactory::getFactory().createBackend(device.get(), BackendType::Playback); backend->open("Loopback"); device->Backend = std::move(backend); } catch(al::backend_exception &e) { WARN("Failed to open loopback device: %s\n", e.what()); alcSetError(nullptr, (e.errorCode() == al::backend_error::OutOfMemory) ? ALC_OUT_OF_MEMORY : ALC_INVALID_VALUE); return nullptr; } { std::lock_guard _{ListLock}; auto iter = std::lower_bound(DeviceList.cbegin(), DeviceList.cend(), device.get()); DeviceList.emplace(iter, device.get()); } TRACE("Created loopback device %p\n", voidp{device.get()}); return device.release(); } END_API_FUNC /** * Determines if the loopback device supports the given format for rendering. */ ALC_API ALCboolean ALC_APIENTRY alcIsRenderFormatSupportedSOFT(ALCdevice *device, ALCsizei freq, ALCenum channels, ALCenum type) START_API_FUNC { DeviceRef dev{VerifyDevice(device)}; if(!dev || dev->Type != DeviceType::Loopback) alcSetError(dev.get(), ALC_INVALID_DEVICE); else if(freq <= 0) alcSetError(dev.get(), ALC_INVALID_VALUE); else { if(DevFmtTypeFromEnum(type).has_value() && DevFmtChannelsFromEnum(channels).has_value() && freq >= MIN_OUTPUT_RATE && freq <= MAX_OUTPUT_RATE) return ALC_TRUE; } return ALC_FALSE; } END_API_FUNC /** * Renders some samples into a buffer, using the format last set by the * attributes given to alcCreateContext. */ FORCE_ALIGN ALC_API void ALC_APIENTRY alcRenderSamplesSOFT(ALCdevice *device, ALCvoid *buffer, ALCsizei samples) START_API_FUNC { if(!device || device->Type != DeviceType::Loopback) alcSetError(device, ALC_INVALID_DEVICE); else if(samples < 0 || (samples > 0 && buffer == nullptr)) alcSetError(device, ALC_INVALID_VALUE); else device->renderSamples(buffer, static_cast(samples), device->channelsFromFmt()); } END_API_FUNC /************************************************ * ALC DSP pause/resume functions ************************************************/ /** Pause the DSP to stop audio processing. */ ALC_API void ALC_APIENTRY alcDevicePauseSOFT(ALCdevice *device) START_API_FUNC { DeviceRef dev{VerifyDevice(device)}; if(!dev || dev->Type != DeviceType::Playback) alcSetError(dev.get(), ALC_INVALID_DEVICE); else { std::lock_guard _{dev->StateLock}; if(dev->Flags.test(DeviceRunning)) dev->Backend->stop(); dev->Flags.reset(DeviceRunning); dev->Flags.set(DevicePaused); } } END_API_FUNC /** Resume the DSP to restart audio processing. */ ALC_API void ALC_APIENTRY alcDeviceResumeSOFT(ALCdevice *device) START_API_FUNC { DeviceRef dev{VerifyDevice(device)}; if(!dev || dev->Type != DeviceType::Playback) { alcSetError(dev.get(), ALC_INVALID_DEVICE); return; } std::lock_guard _{dev->StateLock}; if(!dev->Flags.test(DevicePaused)) return; dev->Flags.reset(DevicePaused); if(dev->mContexts.load()->empty()) return; try { auto backend = dev->Backend.get(); backend->start(); dev->Flags.set(DeviceRunning); } catch(al::backend_exception& e) { ERR("%s\n", e.what()); dev->handleDisconnect("%s", e.what()); alcSetError(dev.get(), ALC_INVALID_DEVICE); return; } TRACE("Post-resume: %s, %s, %uhz, %u / %u buffer\n", DevFmtChannelsString(device->FmtChans), DevFmtTypeString(device->FmtType), device->Frequency, device->UpdateSize, device->BufferSize); } END_API_FUNC /************************************************ * ALC HRTF functions ************************************************/ /** Gets a string parameter at the given index. */ ALC_API const ALCchar* ALC_APIENTRY alcGetStringiSOFT(ALCdevice *device, ALCenum paramName, ALCsizei index) START_API_FUNC { DeviceRef dev{VerifyDevice(device)}; if(!dev || dev->Type == DeviceType::Capture) alcSetError(dev.get(), ALC_INVALID_DEVICE); else switch(paramName) { case ALC_HRTF_SPECIFIER_SOFT: if(index >= 0 && static_cast(index) < dev->mHrtfList.size()) return dev->mHrtfList[static_cast(index)].c_str(); alcSetError(dev.get(), ALC_INVALID_VALUE); break; default: alcSetError(dev.get(), ALC_INVALID_ENUM); break; } return nullptr; } END_API_FUNC /** Resets the given device output, using the specified attribute list. */ ALC_API ALCboolean ALC_APIENTRY alcResetDeviceSOFT(ALCdevice *device, const ALCint *attribs) START_API_FUNC { std::unique_lock listlock{ListLock}; DeviceRef dev{VerifyDevice(device)}; if(!dev || dev->Type == DeviceType::Capture) { listlock.unlock(); alcSetError(dev.get(), ALC_INVALID_DEVICE); return ALC_FALSE; } std::lock_guard _{dev->StateLock}; listlock.unlock(); /* Force the backend to stop mixing first since we're resetting. Also reset * the connected state so lost devices can attempt recover. */ if(dev->Flags.test(DeviceRunning)) dev->Backend->stop(); dev->Flags.reset(DeviceRunning); return ResetDeviceParams(dev.get(), attribs) ? ALC_TRUE : ALC_FALSE; } END_API_FUNC /************************************************ * ALC device reopen functions ************************************************/ /** Reopens the given device output, using the specified name and attribute list. */ FORCE_ALIGN ALCboolean ALC_APIENTRY alcReopenDeviceSOFT(ALCdevice *device, const ALCchar *deviceName, const ALCint *attribs) START_API_FUNC { if(deviceName) { if(!deviceName[0] || al::strcasecmp(deviceName, alcDefaultName) == 0) deviceName = nullptr; } std::unique_lock listlock{ListLock}; DeviceRef dev{VerifyDevice(device)}; if(!dev || dev->Type != DeviceType::Playback) { listlock.unlock(); alcSetError(dev.get(), ALC_INVALID_DEVICE); return ALC_FALSE; } std::lock_guard _{dev->StateLock}; /* Force the backend to stop mixing first since we're reopening. */ if(dev->Flags.test(DeviceRunning)) { auto backend = dev->Backend.get(); backend->stop(); dev->Flags.reset(DeviceRunning); } BackendPtr newbackend; try { newbackend = PlaybackFactory->createBackend(dev.get(), BackendType::Playback); newbackend->open(deviceName); } catch(al::backend_exception &e) { listlock.unlock(); newbackend = nullptr; WARN("Failed to reopen playback device: %s\n", e.what()); alcSetError(dev.get(), (e.errorCode() == al::backend_error::OutOfMemory) ? ALC_OUT_OF_MEMORY : ALC_INVALID_VALUE); /* If the device is connected, not paused, and has contexts, ensure it * continues playing. */ if(dev->Connected.load(std::memory_order_relaxed) && !dev->Flags.test(DevicePaused) && !dev->mContexts.load(std::memory_order_relaxed)->empty()) { try { auto backend = dev->Backend.get(); backend->start(); dev->Flags.set(DeviceRunning); } catch(al::backend_exception &be) { ERR("%s\n", be.what()); dev->handleDisconnect("%s", be.what()); } } return ALC_FALSE; } listlock.unlock(); dev->Backend = std::move(newbackend); TRACE("Reopened device %p, \"%s\"\n", voidp{dev.get()}, dev->DeviceName.c_str()); /* Always return true even if resetting fails. It shouldn't fail, but this * is primarily to avoid confusion by the app seeing the function return * false while the device is on the new output anyway. We could try to * restore the old backend if this fails, but the configuration would be * changed with the new backend and would need to be reset again with the * old one, and the provided attributes may not be appropriate or desirable * for the old device. * * In this way, we essentially act as if the function succeeded, but * immediately disconnects following it. */ ResetDeviceParams(dev.get(), attribs); return ALC_TRUE; } END_API_FUNC