#include "config.h" #include "hrtf.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "albit.h" #include "albyte.h" #include "alfstream.h" #include "almalloc.h" #include "alnumbers.h" #include "alnumeric.h" #include "aloptional.h" #include "alspan.h" #include "ambidefs.h" #include "filters/splitter.h" #include "helpers.h" #include "logging.h" #include "mixer/hrtfdefs.h" #include "opthelpers.h" #include "polyphase_resampler.h" #include "vector.h" namespace { struct HrtfEntry { std::string mDispName; std::string mFilename; /* GCC warns when it tries to inline this. */ ~HrtfEntry(); }; HrtfEntry::~HrtfEntry() = default; struct LoadedHrtf { std::string mFilename; std::unique_ptr mEntry; }; /* Data set limits must be the same as or more flexible than those defined in * the makemhr utility. */ constexpr uint MinFdCount{1}; constexpr uint MaxFdCount{16}; constexpr uint MinFdDistance{50}; constexpr uint MaxFdDistance{2500}; constexpr uint MinEvCount{5}; constexpr uint MaxEvCount{181}; constexpr uint MinAzCount{1}; constexpr uint MaxAzCount{255}; constexpr uint MaxHrirDelay{HrtfHistoryLength - 1}; constexpr uint HrirDelayFracBits{2}; constexpr uint HrirDelayFracOne{1 << HrirDelayFracBits}; constexpr uint HrirDelayFracHalf{HrirDelayFracOne >> 1}; static_assert(MaxHrirDelay*HrirDelayFracOne < 256, "MAX_HRIR_DELAY or DELAY_FRAC too large"); constexpr char magicMarker00[8]{'M','i','n','P','H','R','0','0'}; constexpr char magicMarker01[8]{'M','i','n','P','H','R','0','1'}; constexpr char magicMarker02[8]{'M','i','n','P','H','R','0','2'}; constexpr char magicMarker03[8]{'M','i','n','P','H','R','0','3'}; /* First value for pass-through coefficients (remaining are 0), used for omni- * directional sounds. */ constexpr auto PassthruCoeff = static_cast(1.0/al::numbers::sqrt2); std::mutex LoadedHrtfLock; al::vector LoadedHrtfs; std::mutex EnumeratedHrtfLock; al::vector EnumeratedHrtfs; class databuf final : public std::streambuf { int_type underflow() override { return traits_type::eof(); } pos_type seekoff(off_type offset, std::ios_base::seekdir whence, std::ios_base::openmode mode) override { if((mode&std::ios_base::out) || !(mode&std::ios_base::in)) return traits_type::eof(); char_type *cur; switch(whence) { case std::ios_base::beg: if(offset < 0 || offset > egptr()-eback()) return traits_type::eof(); cur = eback() + offset; break; case std::ios_base::cur: if((offset >= 0 && offset > egptr()-gptr()) || (offset < 0 && -offset > gptr()-eback())) return traits_type::eof(); cur = gptr() + offset; break; case std::ios_base::end: if(offset > 0 || -offset > egptr()-eback()) return traits_type::eof(); cur = egptr() + offset; break; default: return traits_type::eof(); } setg(eback(), cur, egptr()); return cur - eback(); } pos_type seekpos(pos_type pos, std::ios_base::openmode mode) override { // Simplified version of seekoff if((mode&std::ios_base::out) || !(mode&std::ios_base::in)) return traits_type::eof(); if(pos < 0 || pos > egptr()-eback()) return traits_type::eof(); setg(eback(), eback() + static_cast(pos), egptr()); return pos; } public: databuf(const char_type *start_, const char_type *end_) noexcept { setg(const_cast(start_), const_cast(start_), const_cast(end_)); } }; class idstream final : public std::istream { databuf mStreamBuf; public: idstream(const char *start_, const char *end_) : std::istream{nullptr}, mStreamBuf{start_, end_} { init(&mStreamBuf); } }; struct IdxBlend { uint idx; float blend; }; /* Calculate the elevation index given the polar elevation in radians. This * will return an index between 0 and (evcount - 1). */ IdxBlend CalcEvIndex(uint evcount, float ev) { ev = (al::numbers::pi_v*0.5f + ev) * static_cast(evcount-1) / al::numbers::pi_v; uint idx{float2uint(ev)}; return IdxBlend{minu(idx, evcount-1), ev-static_cast(idx)}; } /* Calculate the azimuth index given the polar azimuth in radians. This will * return an index between 0 and (azcount - 1). */ IdxBlend CalcAzIndex(uint azcount, float az) { az = (al::numbers::pi_v*2.0f + az) * static_cast(azcount) / (al::numbers::pi_v*2.0f); uint idx{float2uint(az)}; return IdxBlend{idx%azcount, az-static_cast(idx)}; } } // namespace /* Calculates static HRIR coefficients and delays for the given polar elevation * and azimuth in radians. The coefficients are normalized. */ void GetHrtfCoeffs(const HrtfStore *Hrtf, float elevation, float azimuth, float distance, float spread, HrirArray &coeffs, const al::span delays) { const float dirfact{1.0f - (al::numbers::inv_pi_v/2.0f * spread)}; const auto *field = Hrtf->field; const auto *field_end = field + Hrtf->fdCount-1; size_t ebase{0}; while(distance < field->distance && field != field_end) { ebase += field->evCount; ++field; } /* Calculate the elevation indices. */ const auto elev0 = CalcEvIndex(field->evCount, elevation); const size_t elev1_idx{minu(elev0.idx+1, field->evCount-1)}; const size_t ir0offset{Hrtf->elev[ebase + elev0.idx].irOffset}; const size_t ir1offset{Hrtf->elev[ebase + elev1_idx].irOffset}; /* Calculate azimuth indices. */ const auto az0 = CalcAzIndex(Hrtf->elev[ebase + elev0.idx].azCount, azimuth); const auto az1 = CalcAzIndex(Hrtf->elev[ebase + elev1_idx].azCount, azimuth); /* Calculate the HRIR indices to blend. */ const size_t idx[4]{ ir0offset + az0.idx, ir0offset + ((az0.idx+1) % Hrtf->elev[ebase + elev0.idx].azCount), ir1offset + az1.idx, ir1offset + ((az1.idx+1) % Hrtf->elev[ebase + elev1_idx].azCount) }; /* Calculate bilinear blending weights, attenuated according to the * directional panning factor. */ const float blend[4]{ (1.0f-elev0.blend) * (1.0f-az0.blend) * dirfact, (1.0f-elev0.blend) * ( az0.blend) * dirfact, ( elev0.blend) * (1.0f-az1.blend) * dirfact, ( elev0.blend) * ( az1.blend) * dirfact }; /* Calculate the blended HRIR delays. */ float d{Hrtf->delays[idx[0]][0]*blend[0] + Hrtf->delays[idx[1]][0]*blend[1] + Hrtf->delays[idx[2]][0]*blend[2] + Hrtf->delays[idx[3]][0]*blend[3]}; delays[0] = fastf2u(d * float{1.0f/HrirDelayFracOne}); d = Hrtf->delays[idx[0]][1]*blend[0] + Hrtf->delays[idx[1]][1]*blend[1] + Hrtf->delays[idx[2]][1]*blend[2] + Hrtf->delays[idx[3]][1]*blend[3]; delays[1] = fastf2u(d * float{1.0f/HrirDelayFracOne}); /* Calculate the blended HRIR coefficients. */ float *coeffout{al::assume_aligned<16>(&coeffs[0][0])}; coeffout[0] = PassthruCoeff * (1.0f-dirfact); coeffout[1] = PassthruCoeff * (1.0f-dirfact); std::fill_n(coeffout+2, size_t{HrirLength-1}*2, 0.0f); for(size_t c{0};c < 4;c++) { const float *srccoeffs{al::assume_aligned<16>(Hrtf->coeffs[idx[c]][0].data())}; const float mult{blend[c]}; auto blend_coeffs = [mult](const float src, const float coeff) noexcept -> float { return src*mult + coeff; }; std::transform(srccoeffs, srccoeffs + HrirLength*2, coeffout, coeffout, blend_coeffs); } } std::unique_ptr DirectHrtfState::Create(size_t num_chans) { return std::unique_ptr{new(FamCount(num_chans)) DirectHrtfState{num_chans}}; } void DirectHrtfState::build(const HrtfStore *Hrtf, const uint irSize, const bool perHrirMin, const al::span AmbiPoints, const float (*AmbiMatrix)[MaxAmbiChannels], const float XOverFreq, const al::span AmbiOrderHFGain) { using double2 = std::array; struct ImpulseResponse { const ConstHrirSpan hrir; uint ldelay, rdelay; }; const double xover_norm{double{XOverFreq} / Hrtf->sampleRate}; mChannels[0].mSplitter.init(static_cast(xover_norm)); for(size_t i{0};i < mChannels.size();++i) { const size_t order{AmbiIndex::OrderFromChannel()[i]}; mChannels[i].mSplitter = mChannels[0].mSplitter; mChannels[i].mHfScale = AmbiOrderHFGain[order]; } uint min_delay{HrtfHistoryLength*HrirDelayFracOne}, max_delay{0}; al::vector impres; impres.reserve(AmbiPoints.size()); auto calc_res = [Hrtf,&max_delay,&min_delay](const AngularPoint &pt) -> ImpulseResponse { auto &field = Hrtf->field[0]; const auto elev0 = CalcEvIndex(field.evCount, pt.Elev.value); const size_t elev1_idx{minu(elev0.idx+1, field.evCount-1)}; const size_t ir0offset{Hrtf->elev[elev0.idx].irOffset}; const size_t ir1offset{Hrtf->elev[elev1_idx].irOffset}; const auto az0 = CalcAzIndex(Hrtf->elev[elev0.idx].azCount, pt.Azim.value); const auto az1 = CalcAzIndex(Hrtf->elev[elev1_idx].azCount, pt.Azim.value); const size_t idx[4]{ ir0offset + az0.idx, ir0offset + ((az0.idx+1) % Hrtf->elev[elev0.idx].azCount), ir1offset + az1.idx, ir1offset + ((az1.idx+1) % Hrtf->elev[elev1_idx].azCount) }; /* The largest blend factor serves as the closest HRIR. */ const size_t irOffset{idx[(elev0.blend >= 0.5f)*2 + (az1.blend >= 0.5f)]}; ImpulseResponse res{Hrtf->coeffs[irOffset], Hrtf->delays[irOffset][0], Hrtf->delays[irOffset][1]}; min_delay = minu(min_delay, minu(res.ldelay, res.rdelay)); max_delay = maxu(max_delay, maxu(res.ldelay, res.rdelay)); return res; }; std::transform(AmbiPoints.begin(), AmbiPoints.end(), std::back_inserter(impres), calc_res); auto hrir_delay_round = [](const uint d) noexcept -> uint { return (d+HrirDelayFracHalf) >> HrirDelayFracBits; }; TRACE("Min delay: %.2f, max delay: %.2f, FIR length: %u\n", min_delay/double{HrirDelayFracOne}, max_delay/double{HrirDelayFracOne}, irSize); auto tmpres = al::vector>(mChannels.size()); max_delay = 0; for(size_t c{0u};c < AmbiPoints.size();++c) { const ConstHrirSpan hrir{impres[c].hrir}; const uint base_delay{perHrirMin ? minu(impres[c].ldelay, impres[c].rdelay) : min_delay}; const uint ldelay{hrir_delay_round(impres[c].ldelay - base_delay)}; const uint rdelay{hrir_delay_round(impres[c].rdelay - base_delay)}; max_delay = maxu(max_delay, maxu(impres[c].ldelay, impres[c].rdelay) - base_delay); for(size_t i{0u};i < mChannels.size();++i) { const double mult{AmbiMatrix[c][i]}; const size_t numirs{HrirLength - maxz(ldelay, rdelay)}; size_t lidx{ldelay}, ridx{rdelay}; for(size_t j{0};j < numirs;++j) { tmpres[i][lidx++][0] += hrir[j][0] * mult; tmpres[i][ridx++][1] += hrir[j][1] * mult; } } } impres.clear(); for(size_t i{0u};i < mChannels.size();++i) { auto copy_arr = [](const double2 &in) noexcept -> float2 { return float2{{static_cast(in[0]), static_cast(in[1])}}; }; std::transform(tmpres[i].cbegin(), tmpres[i].cend(), mChannels[i].mCoeffs.begin(), copy_arr); } tmpres.clear(); const uint max_length{minu(hrir_delay_round(max_delay) + irSize, HrirLength)}; TRACE("New max delay: %.2f, FIR length: %u\n", max_delay/double{HrirDelayFracOne}, max_length); mIrSize = max_length; } namespace { std::unique_ptr CreateHrtfStore(uint rate, ushort irSize, const al::span fields, const al::span elevs, const HrirArray *coeffs, const ubyte2 *delays, const char *filename) { const size_t irCount{size_t{elevs.back().azCount} + elevs.back().irOffset}; size_t total{sizeof(HrtfStore)}; total = RoundUp(total, alignof(HrtfStore::Field)); /* Align for field infos */ total += sizeof(std::declval().field[0])*fields.size(); total = RoundUp(total, alignof(HrtfStore::Elevation)); /* Align for elevation infos */ total += sizeof(std::declval().elev[0])*elevs.size(); total = RoundUp(total, 16); /* Align for coefficients using SIMD */ total += sizeof(std::declval().coeffs[0])*irCount; total += sizeof(std::declval().delays[0])*irCount; void *ptr{al_calloc(16, total)}; std::unique_ptr Hrtf{al::construct_at(static_cast(ptr))}; if(!Hrtf) ERR("Out of memory allocating storage for %s.\n", filename); else { InitRef(Hrtf->mRef, 1u); Hrtf->sampleRate = rate; Hrtf->irSize = irSize; Hrtf->fdCount = static_cast(fields.size()); /* Set up pointers to storage following the main HRTF struct. */ char *base = reinterpret_cast(Hrtf.get()); size_t offset{sizeof(HrtfStore)}; offset = RoundUp(offset, alignof(HrtfStore::Field)); /* Align for field infos */ auto field_ = reinterpret_cast(base + offset); offset += sizeof(field_[0])*fields.size(); offset = RoundUp(offset, alignof(HrtfStore::Elevation)); /* Align for elevation infos */ auto elev_ = reinterpret_cast(base + offset); offset += sizeof(elev_[0])*elevs.size(); offset = RoundUp(offset, 16); /* Align for coefficients using SIMD */ auto coeffs_ = reinterpret_cast(base + offset); offset += sizeof(coeffs_[0])*irCount; auto delays_ = reinterpret_cast(base + offset); offset += sizeof(delays_[0])*irCount; if(unlikely(offset != total)) throw std::runtime_error{"HrtfStore allocation size mismatch"}; /* Copy input data to storage. */ std::uninitialized_copy(fields.cbegin(), fields.cend(), field_); std::uninitialized_copy(elevs.cbegin(), elevs.cend(), elev_); std::uninitialized_copy_n(coeffs, irCount, coeffs_); std::uninitialized_copy_n(delays, irCount, delays_); /* Finally, assign the storage pointers. */ Hrtf->field = field_; Hrtf->elev = elev_; Hrtf->coeffs = coeffs_; Hrtf->delays = delays_; } return Hrtf; } void MirrorLeftHrirs(const al::span elevs, HrirArray *coeffs, ubyte2 *delays) { for(const auto &elev : elevs) { const ushort evoffset{elev.irOffset}; const ushort azcount{elev.azCount}; for(size_t j{0};j < azcount;j++) { const size_t lidx{evoffset + j}; const size_t ridx{evoffset + ((azcount-j) % azcount)}; const size_t irSize{coeffs[ridx].size()}; for(size_t k{0};k < irSize;k++) coeffs[ridx][k][1] = coeffs[lidx][k][0]; delays[ridx][1] = delays[lidx][0]; } } } template constexpr std::enable_if_t::value && num_bits < sizeof(T)*8, T> fixsign(T value) noexcept { constexpr auto signbit = static_cast(1u << (num_bits-1)); return static_cast((value^signbit) - signbit); } template constexpr std::enable_if_t::value || num_bits == sizeof(T)*8, T> fixsign(T value) noexcept { return value; } template inline std::enable_if_t readle(std::istream &data) { static_assert((num_bits&7) == 0, "num_bits must be a multiple of 8"); static_assert(num_bits <= sizeof(T)*8, "num_bits is too large for the type"); T ret{}; if(!data.read(reinterpret_cast(&ret), num_bits/8)) return static_cast(EOF); return fixsign(ret); } template inline std::enable_if_t readle(std::istream &data) { static_assert((num_bits&7) == 0, "num_bits must be a multiple of 8"); static_assert(num_bits <= sizeof(T)*8, "num_bits is too large for the type"); T ret{}; al::byte b[sizeof(T)]{}; if(!data.read(reinterpret_cast(b), num_bits/8)) return static_cast(EOF); std::reverse_copy(std::begin(b), std::end(b), reinterpret_cast(&ret)); return fixsign(ret); } template<> inline uint8_t readle(std::istream &data) { return static_cast(data.get()); } std::unique_ptr LoadHrtf00(std::istream &data, const char *filename) { uint rate{readle(data)}; ushort irCount{readle(data)}; ushort irSize{readle(data)}; ubyte evCount{readle(data)}; if(!data || data.eof()) { ERR("Failed reading %s\n", filename); return nullptr; } if(irSize < MinIrLength || irSize > HrirLength) { ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MinIrLength, HrirLength); return nullptr; } if(evCount < MinEvCount || evCount > MaxEvCount) { ERR("Unsupported elevation count: evCount=%d (%d to %d)\n", evCount, MinEvCount, MaxEvCount); return nullptr; } auto elevs = al::vector(evCount); for(auto &elev : elevs) elev.irOffset = readle(data); if(!data || data.eof()) { ERR("Failed reading %s\n", filename); return nullptr; } for(size_t i{1};i < evCount;i++) { if(elevs[i].irOffset <= elevs[i-1].irOffset) { ERR("Invalid evOffset: evOffset[%zu]=%d (last=%d)\n", i, elevs[i].irOffset, elevs[i-1].irOffset); return nullptr; } } if(irCount <= elevs.back().irOffset) { ERR("Invalid evOffset: evOffset[%zu]=%d (irCount=%d)\n", elevs.size()-1, elevs.back().irOffset, irCount); return nullptr; } for(size_t i{1};i < evCount;i++) { elevs[i-1].azCount = static_cast(elevs[i].irOffset - elevs[i-1].irOffset); if(elevs[i-1].azCount < MinAzCount || elevs[i-1].azCount > MaxAzCount) { ERR("Unsupported azimuth count: azCount[%zd]=%d (%d to %d)\n", i-1, elevs[i-1].azCount, MinAzCount, MaxAzCount); return nullptr; } } elevs.back().azCount = static_cast(irCount - elevs.back().irOffset); if(elevs.back().azCount < MinAzCount || elevs.back().azCount > MaxAzCount) { ERR("Unsupported azimuth count: azCount[%zu]=%d (%d to %d)\n", elevs.size()-1, elevs.back().azCount, MinAzCount, MaxAzCount); return nullptr; } auto coeffs = al::vector(irCount, HrirArray{}); auto delays = al::vector(irCount); for(auto &hrir : coeffs) { for(auto &val : al::span{hrir.data(), irSize}) val[0] = readle(data) / 32768.0f; } for(auto &val : delays) val[0] = readle(data); if(!data || data.eof()) { ERR("Failed reading %s\n", filename); return nullptr; } for(size_t i{0};i < irCount;i++) { if(delays[i][0] > MaxHrirDelay) { ERR("Invalid delays[%zd]: %d (%d)\n", i, delays[i][0], MaxHrirDelay); return nullptr; } delays[i][0] <<= HrirDelayFracBits; } /* Mirror the left ear responses to the right ear. */ MirrorLeftHrirs({elevs.data(), elevs.size()}, coeffs.data(), delays.data()); const HrtfStore::Field field[1]{{0.0f, evCount}}; return CreateHrtfStore(rate, irSize, field, {elevs.data(), elevs.size()}, coeffs.data(), delays.data(), filename); } std::unique_ptr LoadHrtf01(std::istream &data, const char *filename) { uint rate{readle(data)}; ushort irSize{readle(data)}; ubyte evCount{readle(data)}; if(!data || data.eof()) { ERR("Failed reading %s\n", filename); return nullptr; } if(irSize < MinIrLength || irSize > HrirLength) { ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MinIrLength, HrirLength); return nullptr; } if(evCount < MinEvCount || evCount > MaxEvCount) { ERR("Unsupported elevation count: evCount=%d (%d to %d)\n", evCount, MinEvCount, MaxEvCount); return nullptr; } auto elevs = al::vector(evCount); for(auto &elev : elevs) elev.azCount = readle(data); if(!data || data.eof()) { ERR("Failed reading %s\n", filename); return nullptr; } for(size_t i{0};i < evCount;++i) { if(elevs[i].azCount < MinAzCount || elevs[i].azCount > MaxAzCount) { ERR("Unsupported azimuth count: azCount[%zd]=%d (%d to %d)\n", i, elevs[i].azCount, MinAzCount, MaxAzCount); return nullptr; } } elevs[0].irOffset = 0; for(size_t i{1};i < evCount;i++) elevs[i].irOffset = static_cast(elevs[i-1].irOffset + elevs[i-1].azCount); const ushort irCount{static_cast(elevs.back().irOffset + elevs.back().azCount)}; auto coeffs = al::vector(irCount, HrirArray{}); auto delays = al::vector(irCount); for(auto &hrir : coeffs) { for(auto &val : al::span{hrir.data(), irSize}) val[0] = readle(data) / 32768.0f; } for(auto &val : delays) val[0] = readle(data); if(!data || data.eof()) { ERR("Failed reading %s\n", filename); return nullptr; } for(size_t i{0};i < irCount;i++) { if(delays[i][0] > MaxHrirDelay) { ERR("Invalid delays[%zd]: %d (%d)\n", i, delays[i][0], MaxHrirDelay); return nullptr; } delays[i][0] <<= HrirDelayFracBits; } /* Mirror the left ear responses to the right ear. */ MirrorLeftHrirs({elevs.data(), elevs.size()}, coeffs.data(), delays.data()); const HrtfStore::Field field[1]{{0.0f, evCount}}; return CreateHrtfStore(rate, irSize, field, {elevs.data(), elevs.size()}, coeffs.data(), delays.data(), filename); } std::unique_ptr LoadHrtf02(std::istream &data, const char *filename) { constexpr ubyte SampleType_S16{0}; constexpr ubyte SampleType_S24{1}; constexpr ubyte ChanType_LeftOnly{0}; constexpr ubyte ChanType_LeftRight{1}; uint rate{readle(data)}; ubyte sampleType{readle(data)}; ubyte channelType{readle(data)}; ushort irSize{readle(data)}; ubyte fdCount{readle(data)}; if(!data || data.eof()) { ERR("Failed reading %s\n", filename); return nullptr; } if(sampleType > SampleType_S24) { ERR("Unsupported sample type: %d\n", sampleType); return nullptr; } if(channelType > ChanType_LeftRight) { ERR("Unsupported channel type: %d\n", channelType); return nullptr; } if(irSize < MinIrLength || irSize > HrirLength) { ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MinIrLength, HrirLength); return nullptr; } if(fdCount < 1 || fdCount > MaxFdCount) { ERR("Unsupported number of field-depths: fdCount=%d (%d to %d)\n", fdCount, MinFdCount, MaxFdCount); return nullptr; } auto fields = al::vector(fdCount); auto elevs = al::vector{}; for(size_t f{0};f < fdCount;f++) { const ushort distance{readle(data)}; const ubyte evCount{readle(data)}; if(!data || data.eof()) { ERR("Failed reading %s\n", filename); return nullptr; } if(distance < MinFdDistance || distance > MaxFdDistance) { ERR("Unsupported field distance[%zu]=%d (%d to %d millimeters)\n", f, distance, MinFdDistance, MaxFdDistance); return nullptr; } if(evCount < MinEvCount || evCount > MaxEvCount) { ERR("Unsupported elevation count: evCount[%zu]=%d (%d to %d)\n", f, evCount, MinEvCount, MaxEvCount); return nullptr; } fields[f].distance = distance / 1000.0f; fields[f].evCount = evCount; if(f > 0 && fields[f].distance <= fields[f-1].distance) { ERR("Field distance[%zu] is not after previous (%f > %f)\n", f, fields[f].distance, fields[f-1].distance); return nullptr; } const size_t ebase{elevs.size()}; elevs.resize(ebase + evCount); for(auto &elev : al::span(elevs.data()+ebase, evCount)) elev.azCount = readle(data); if(!data || data.eof()) { ERR("Failed reading %s\n", filename); return nullptr; } for(size_t e{0};e < evCount;e++) { if(elevs[ebase+e].azCount < MinAzCount || elevs[ebase+e].azCount > MaxAzCount) { ERR("Unsupported azimuth count: azCount[%zu][%zu]=%d (%d to %d)\n", f, e, elevs[ebase+e].azCount, MinAzCount, MaxAzCount); return nullptr; } } } elevs[0].irOffset = 0; std::partial_sum(elevs.cbegin(), elevs.cend(), elevs.begin(), [](const HrtfStore::Elevation &last, const HrtfStore::Elevation &cur) -> HrtfStore::Elevation { return HrtfStore::Elevation{cur.azCount, static_cast(last.azCount + last.irOffset)}; }); const auto irTotal = static_cast(elevs.back().azCount + elevs.back().irOffset); auto coeffs = al::vector(irTotal, HrirArray{}); auto delays = al::vector(irTotal); if(channelType == ChanType_LeftOnly) { if(sampleType == SampleType_S16) { for(auto &hrir : coeffs) { for(auto &val : al::span{hrir.data(), irSize}) val[0] = readle(data) / 32768.0f; } } else if(sampleType == SampleType_S24) { for(auto &hrir : coeffs) { for(auto &val : al::span{hrir.data(), irSize}) val[0] = static_cast(readle(data)) / 8388608.0f; } } for(auto &val : delays) val[0] = readle(data); if(!data || data.eof()) { ERR("Failed reading %s\n", filename); return nullptr; } for(size_t i{0};i < irTotal;++i) { if(delays[i][0] > MaxHrirDelay) { ERR("Invalid delays[%zu][0]: %d (%d)\n", i, delays[i][0], MaxHrirDelay); return nullptr; } delays[i][0] <<= HrirDelayFracBits; } /* Mirror the left ear responses to the right ear. */ MirrorLeftHrirs({elevs.data(), elevs.size()}, coeffs.data(), delays.data()); } else if(channelType == ChanType_LeftRight) { if(sampleType == SampleType_S16) { for(auto &hrir : coeffs) { for(auto &val : al::span{hrir.data(), irSize}) { val[0] = readle(data) / 32768.0f; val[1] = readle(data) / 32768.0f; } } } else if(sampleType == SampleType_S24) { for(auto &hrir : coeffs) { for(auto &val : al::span{hrir.data(), irSize}) { val[0] = static_cast(readle(data)) / 8388608.0f; val[1] = static_cast(readle(data)) / 8388608.0f; } } } for(auto &val : delays) { val[0] = readle(data); val[1] = readle(data); } if(!data || data.eof()) { ERR("Failed reading %s\n", filename); return nullptr; } for(size_t i{0};i < irTotal;++i) { if(delays[i][0] > MaxHrirDelay) { ERR("Invalid delays[%zu][0]: %d (%d)\n", i, delays[i][0], MaxHrirDelay); return nullptr; } if(delays[i][1] > MaxHrirDelay) { ERR("Invalid delays[%zu][1]: %d (%d)\n", i, delays[i][1], MaxHrirDelay); return nullptr; } delays[i][0] <<= HrirDelayFracBits; delays[i][1] <<= HrirDelayFracBits; } } if(fdCount > 1) { auto fields_ = al::vector(fields.size()); auto elevs_ = al::vector(elevs.size()); auto coeffs_ = al::vector(coeffs.size()); auto delays_ = al::vector(delays.size()); /* Simple reverse for the per-field elements. */ std::reverse_copy(fields.cbegin(), fields.cend(), fields_.begin()); /* Each field has a group of elevations, which each have an azimuth * count. Reverse the order of the groups, keeping the relative order * of per-group azimuth counts. */ auto elevs__end = elevs_.end(); auto copy_azs = [&elevs,&elevs__end](const ptrdiff_t ebase, const HrtfStore::Field &field) -> ptrdiff_t { auto elevs_src = elevs.begin()+ebase; elevs__end = std::copy_backward(elevs_src, elevs_src+field.evCount, elevs__end); return ebase + field.evCount; }; (void)std::accumulate(fields.cbegin(), fields.cend(), ptrdiff_t{0}, copy_azs); assert(elevs_.begin() == elevs__end); /* Reestablish the IR offset for each elevation index, given the new * ordering of elevations. */ elevs_[0].irOffset = 0; std::partial_sum(elevs_.cbegin(), elevs_.cend(), elevs_.begin(), [](const HrtfStore::Elevation &last, const HrtfStore::Elevation &cur) -> HrtfStore::Elevation { return HrtfStore::Elevation{cur.azCount, static_cast(last.azCount + last.irOffset)}; }); /* Reverse the order of each field's group of IRs. */ auto coeffs_end = coeffs_.end(); auto delays_end = delays_.end(); auto copy_irs = [&elevs,&coeffs,&delays,&coeffs_end,&delays_end]( const ptrdiff_t ebase, const HrtfStore::Field &field) -> ptrdiff_t { auto accum_az = [](int count, const HrtfStore::Elevation &elev) noexcept -> int { return count + elev.azCount; }; const auto elevs_mid = elevs.cbegin() + ebase; const auto elevs_end = elevs_mid + field.evCount; const int abase{std::accumulate(elevs.cbegin(), elevs_mid, 0, accum_az)}; const int num_azs{std::accumulate(elevs_mid, elevs_end, 0, accum_az)}; coeffs_end = std::copy_backward(coeffs.cbegin() + abase, coeffs.cbegin() + (abase+num_azs), coeffs_end); delays_end = std::copy_backward(delays.cbegin() + abase, delays.cbegin() + (abase+num_azs), delays_end); return ebase + field.evCount; }; (void)std::accumulate(fields.cbegin(), fields.cend(), ptrdiff_t{0}, copy_irs); assert(coeffs_.begin() == coeffs_end); assert(delays_.begin() == delays_end); fields = std::move(fields_); elevs = std::move(elevs_); coeffs = std::move(coeffs_); delays = std::move(delays_); } return CreateHrtfStore(rate, irSize, {fields.data(), fields.size()}, {elevs.data(), elevs.size()}, coeffs.data(), delays.data(), filename); } std::unique_ptr LoadHrtf03(std::istream &data, const char *filename) { constexpr ubyte ChanType_LeftOnly{0}; constexpr ubyte ChanType_LeftRight{1}; uint rate{readle(data)}; ubyte channelType{readle(data)}; ushort irSize{readle(data)}; ubyte fdCount{readle(data)}; if(!data || data.eof()) { ERR("Failed reading %s\n", filename); return nullptr; } if(channelType > ChanType_LeftRight) { ERR("Unsupported channel type: %d\n", channelType); return nullptr; } if(irSize < MinIrLength || irSize > HrirLength) { ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MinIrLength, HrirLength); return nullptr; } if(fdCount < 1 || fdCount > MaxFdCount) { ERR("Unsupported number of field-depths: fdCount=%d (%d to %d)\n", fdCount, MinFdCount, MaxFdCount); return nullptr; } auto fields = al::vector(fdCount); auto elevs = al::vector{}; for(size_t f{0};f < fdCount;f++) { const ushort distance{readle(data)}; const ubyte evCount{readle(data)}; if(!data || data.eof()) { ERR("Failed reading %s\n", filename); return nullptr; } if(distance < MinFdDistance || distance > MaxFdDistance) { ERR("Unsupported field distance[%zu]=%d (%d to %d millimeters)\n", f, distance, MinFdDistance, MaxFdDistance); return nullptr; } if(evCount < MinEvCount || evCount > MaxEvCount) { ERR("Unsupported elevation count: evCount[%zu]=%d (%d to %d)\n", f, evCount, MinEvCount, MaxEvCount); return nullptr; } fields[f].distance = distance / 1000.0f; fields[f].evCount = evCount; if(f > 0 && fields[f].distance > fields[f-1].distance) { ERR("Field distance[%zu] is not before previous (%f <= %f)\n", f, fields[f].distance, fields[f-1].distance); return nullptr; } const size_t ebase{elevs.size()}; elevs.resize(ebase + evCount); for(auto &elev : al::span(elevs.data()+ebase, evCount)) elev.azCount = readle(data); if(!data || data.eof()) { ERR("Failed reading %s\n", filename); return nullptr; } for(size_t e{0};e < evCount;e++) { if(elevs[ebase+e].azCount < MinAzCount || elevs[ebase+e].azCount > MaxAzCount) { ERR("Unsupported azimuth count: azCount[%zu][%zu]=%d (%d to %d)\n", f, e, elevs[ebase+e].azCount, MinAzCount, MaxAzCount); return nullptr; } } } elevs[0].irOffset = 0; std::partial_sum(elevs.cbegin(), elevs.cend(), elevs.begin(), [](const HrtfStore::Elevation &last, const HrtfStore::Elevation &cur) -> HrtfStore::Elevation { return HrtfStore::Elevation{cur.azCount, static_cast(last.azCount + last.irOffset)}; }); const auto irTotal = static_cast(elevs.back().azCount + elevs.back().irOffset); auto coeffs = al::vector(irTotal, HrirArray{}); auto delays = al::vector(irTotal); if(channelType == ChanType_LeftOnly) { for(auto &hrir : coeffs) { for(auto &val : al::span{hrir.data(), irSize}) val[0] = static_cast(readle(data)) / 8388608.0f; } for(auto &val : delays) val[0] = readle(data); if(!data || data.eof()) { ERR("Failed reading %s\n", filename); return nullptr; } for(size_t i{0};i < irTotal;++i) { if(delays[i][0] > MaxHrirDelay<{hrir.data(), irSize}) { val[0] = static_cast(readle(data)) / 8388608.0f; val[1] = static_cast(readle(data)) / 8388608.0f; } } for(auto &val : delays) { val[0] = readle(data); val[1] = readle(data); } if(!data || data.eof()) { ERR("Failed reading %s\n", filename); return nullptr; } for(size_t i{0};i < irTotal;++i) { if(delays[i][0] > MaxHrirDelay< MaxHrirDelay< bool { return name == entry.mDispName; }; auto &enum_names = EnumeratedHrtfs; return std::find_if(enum_names.cbegin(), enum_names.cend(), match_name) != enum_names.cend(); } void AddFileEntry(const std::string &filename) { /* Check if this file has already been enumerated. */ auto enum_iter = std::find_if(EnumeratedHrtfs.cbegin(), EnumeratedHrtfs.cend(), [&filename](const HrtfEntry &entry) -> bool { return entry.mFilename == filename; }); if(enum_iter != EnumeratedHrtfs.cend()) { TRACE("Skipping duplicate file entry %s\n", filename.c_str()); return; } /* TODO: Get a human-readable name from the HRTF data (possibly coming in a * format update). */ size_t namepos{filename.find_last_of('/')+1}; if(!namepos) namepos = filename.find_last_of('\\')+1; size_t extpos{filename.find_last_of('.')}; if(extpos <= namepos) extpos = std::string::npos; const std::string basename{(extpos == std::string::npos) ? filename.substr(namepos) : filename.substr(namepos, extpos-namepos)}; std::string newname{basename}; int count{1}; while(checkName(newname)) { newname = basename; newname += " #"; newname += std::to_string(++count); } EnumeratedHrtfs.emplace_back(HrtfEntry{newname, filename}); const HrtfEntry &entry = EnumeratedHrtfs.back(); TRACE("Adding file entry \"%s\"\n", entry.mFilename.c_str()); } /* Unfortunate that we have to duplicate AddFileEntry to take a memory buffer * for input instead of opening the given filename. */ void AddBuiltInEntry(const std::string &dispname, uint residx) { const std::string filename{'!'+std::to_string(residx)+'_'+dispname}; auto enum_iter = std::find_if(EnumeratedHrtfs.cbegin(), EnumeratedHrtfs.cend(), [&filename](const HrtfEntry &entry) -> bool { return entry.mFilename == filename; }); if(enum_iter != EnumeratedHrtfs.cend()) { TRACE("Skipping duplicate file entry %s\n", filename.c_str()); return; } /* TODO: Get a human-readable name from the HRTF data (possibly coming in a * format update). */ std::string newname{dispname}; int count{1}; while(checkName(newname)) { newname = dispname; newname += " #"; newname += std::to_string(++count); } EnumeratedHrtfs.emplace_back(HrtfEntry{newname, filename}); const HrtfEntry &entry = EnumeratedHrtfs.back(); TRACE("Adding built-in entry \"%s\"\n", entry.mFilename.c_str()); } #define IDR_DEFAULT_HRTF_MHR 1 #ifndef ALSOFT_EMBED_HRTF_DATA al::span GetResource(int /*name*/) { return {}; } #else #include "hrtf_default.h" al::span GetResource(int name) { if(name == IDR_DEFAULT_HRTF_MHR) return {reinterpret_cast(hrtf_default), sizeof(hrtf_default)}; return {}; } #endif } // namespace al::vector EnumerateHrtf(al::optional pathopt) { std::lock_guard _{EnumeratedHrtfLock}; EnumeratedHrtfs.clear(); bool usedefaults{true}; if(pathopt) { const char *pathlist{pathopt->c_str()}; while(pathlist && *pathlist) { const char *next, *end; while(isspace(*pathlist) || *pathlist == ',') pathlist++; if(*pathlist == '\0') continue; next = strchr(pathlist, ','); if(next) end = next++; else { end = pathlist + strlen(pathlist); usedefaults = false; } while(end != pathlist && isspace(*(end-1))) --end; if(end != pathlist) { const std::string pname{pathlist, end}; for(const auto &fname : SearchDataFiles(".mhr", pname.c_str())) AddFileEntry(fname); } pathlist = next; } } if(usedefaults) { for(const auto &fname : SearchDataFiles(".mhr", "openal/hrtf")) AddFileEntry(fname); if(!GetResource(IDR_DEFAULT_HRTF_MHR).empty()) AddBuiltInEntry("Built-In HRTF", IDR_DEFAULT_HRTF_MHR); } al::vector list; list.reserve(EnumeratedHrtfs.size()); for(auto &entry : EnumeratedHrtfs) list.emplace_back(entry.mDispName); return list; } HrtfStorePtr GetLoadedHrtf(const std::string &name, const uint devrate) { std::lock_guard _{EnumeratedHrtfLock}; auto entry_iter = std::find_if(EnumeratedHrtfs.cbegin(), EnumeratedHrtfs.cend(), [&name](const HrtfEntry &entry) -> bool { return entry.mDispName == name; }); if(entry_iter == EnumeratedHrtfs.cend()) return nullptr; const std::string &fname = entry_iter->mFilename; std::lock_guard __{LoadedHrtfLock}; auto hrtf_lt_fname = [](LoadedHrtf &hrtf, const std::string &filename) -> bool { return hrtf.mFilename < filename; }; auto handle = std::lower_bound(LoadedHrtfs.begin(), LoadedHrtfs.end(), fname, hrtf_lt_fname); while(handle != LoadedHrtfs.end() && handle->mFilename == fname) { HrtfStore *hrtf{handle->mEntry.get()}; if(hrtf && hrtf->sampleRate == devrate) { hrtf->add_ref(); return HrtfStorePtr{hrtf}; } ++handle; } std::unique_ptr stream; int residx{}; char ch{}; if(sscanf(fname.c_str(), "!%d%c", &residx, &ch) == 2 && ch == '_') { TRACE("Loading %s...\n", fname.c_str()); al::span res{GetResource(residx)}; if(res.empty()) { ERR("Could not get resource %u, %s\n", residx, name.c_str()); return nullptr; } stream = std::make_unique(res.begin(), res.end()); } else { TRACE("Loading %s...\n", fname.c_str()); auto fstr = std::make_unique(fname.c_str(), std::ios::binary); if(!fstr->is_open()) { ERR("Could not open %s\n", fname.c_str()); return nullptr; } stream = std::move(fstr); } std::unique_ptr hrtf; char magic[sizeof(magicMarker03)]; stream->read(magic, sizeof(magic)); if(stream->gcount() < static_cast(sizeof(magicMarker03))) ERR("%s data is too short (%zu bytes)\n", name.c_str(), stream->gcount()); else if(memcmp(magic, magicMarker03, sizeof(magicMarker03)) == 0) { TRACE("Detected data set format v3\n"); hrtf = LoadHrtf03(*stream, name.c_str()); } else if(memcmp(magic, magicMarker02, sizeof(magicMarker02)) == 0) { TRACE("Detected data set format v2\n"); hrtf = LoadHrtf02(*stream, name.c_str()); } else if(memcmp(magic, magicMarker01, sizeof(magicMarker01)) == 0) { TRACE("Detected data set format v1\n"); hrtf = LoadHrtf01(*stream, name.c_str()); } else if(memcmp(magic, magicMarker00, sizeof(magicMarker00)) == 0) { TRACE("Detected data set format v0\n"); hrtf = LoadHrtf00(*stream, name.c_str()); } else ERR("Invalid header in %s: \"%.8s\"\n", name.c_str(), magic); stream.reset(); if(!hrtf) { ERR("Failed to load %s\n", name.c_str()); return nullptr; } if(hrtf->sampleRate != devrate) { TRACE("Resampling HRTF %s (%uhz -> %uhz)\n", name.c_str(), hrtf->sampleRate, devrate); /* Calculate the last elevation's index and get the total IR count. */ const size_t lastEv{std::accumulate(hrtf->field, hrtf->field+hrtf->fdCount, size_t{0}, [](const size_t curval, const HrtfStore::Field &field) noexcept -> size_t { return curval + field.evCount; } ) - 1}; const size_t irCount{size_t{hrtf->elev[lastEv].irOffset} + hrtf->elev[lastEv].azCount}; /* Resample all the IRs. */ std::array,2> inout; PPhaseResampler rs; rs.init(hrtf->sampleRate, devrate); for(size_t i{0};i < irCount;++i) { HrirArray &coeffs = const_cast(hrtf->coeffs[i]); for(size_t j{0};j < 2;++j) { std::transform(coeffs.cbegin(), coeffs.cend(), inout[0].begin(), [j](const float2 &in) noexcept -> double { return in[j]; }); rs.process(HrirLength, inout[0].data(), HrirLength, inout[1].data()); for(size_t k{0};k < HrirLength;++k) coeffs[k][j] = static_cast(inout[1][k]); } } rs = {}; /* Scale the delays for the new sample rate. */ float max_delay{0.0f}; auto new_delays = al::vector(irCount); const float rate_scale{static_cast(devrate)/static_cast(hrtf->sampleRate)}; for(size_t i{0};i < irCount;++i) { for(size_t j{0};j < 2;++j) { const float new_delay{std::round(hrtf->delays[i][j] * rate_scale) / float{HrirDelayFracOne}}; max_delay = maxf(max_delay, new_delay); new_delays[i][j] = new_delay; } } /* If the new delays exceed the max, scale it down to fit (essentially * shrinking the head radius; not ideal but better than a per-delay * clamp). */ float delay_scale{HrirDelayFracOne}; if(max_delay > MaxHrirDelay) { WARN("Resampled delay exceeds max (%.2f > %d)\n", max_delay, MaxHrirDelay); delay_scale *= float{MaxHrirDelay} / max_delay; } for(size_t i{0};i < irCount;++i) { ubyte2 &delays = const_cast(hrtf->delays[i]); for(size_t j{0};j < 2;++j) delays[j] = static_cast(float2int(new_delays[i][j]*delay_scale + 0.5f)); } /* Scale the IR size for the new sample rate and update the stored * sample rate. */ const float newIrSize{std::round(static_cast(hrtf->irSize) * rate_scale)}; hrtf->irSize = static_cast(minf(HrirLength, newIrSize)); hrtf->sampleRate = devrate; } TRACE("Loaded HRTF %s for sample rate %uhz, %u-sample filter\n", name.c_str(), hrtf->sampleRate, hrtf->irSize); handle = LoadedHrtfs.emplace(handle, LoadedHrtf{fname, std::move(hrtf)}); return HrtfStorePtr{handle->mEntry.get()}; } void HrtfStore::add_ref() { auto ref = IncrementRef(mRef); TRACE("HrtfStore %p increasing refcount to %u\n", decltype(std::declval()){this}, ref); } void HrtfStore::release() { auto ref = DecrementRef(mRef); TRACE("HrtfStore %p decreasing refcount to %u\n", decltype(std::declval()){this}, ref); if(ref == 0) { std::lock_guard _{LoadedHrtfLock}; /* Go through and remove all unused HRTFs. */ auto remove_unused = [](LoadedHrtf &hrtf) -> bool { HrtfStore *entry{hrtf.mEntry.get()}; if(entry && ReadRef(entry->mRef) == 0) { TRACE("Unloading unused HRTF %s\n", hrtf.mFilename.data()); hrtf.mEntry = nullptr; return true; } return false; }; auto iter = std::remove_if(LoadedHrtfs.begin(), LoadedHrtfs.end(), remove_unused); LoadedHrtfs.erase(iter, LoadedHrtfs.end()); } }