/* * * Bluetooth low-complexity, subband codec (SBC) library * * Copyright (C) 2008-2010 Nokia Corporation * Copyright (C) 2012-2014 Intel Corporation * Copyright (C) 2004-2010 Marcel Holtmann * Copyright (C) 2004-2005 Henryk Ploetz * Copyright (C) 2005-2006 Brad Midgley * * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * */ #ifndef __SBC_H #define __SBC_H #ifdef __cplusplus extern "C" { #endif #include //#include #include /* sampling frequency */ #define SBC_FREQ_16000 0x00 #define SBC_FREQ_32000 0x01 #define SBC_FREQ_44100 0x02 #define SBC_FREQ_48000 0x03 /* blocks */ #define SBC_BLK_4 0x00 #define SBC_BLK_8 0x01 #define SBC_BLK_12 0x02 #define SBC_BLK_16 0x03 /* channel mode */ #define SBC_MODE_MONO 0x00 #define SBC_MODE_DUAL_CHANNEL 0x01 #define SBC_MODE_STEREO 0x02 #define SBC_MODE_JOINT_STEREO 0x03 /* allocation method */ #define SBC_AM_LOUDNESS 0x00 #define SBC_AM_SNR 0x01 /* subbands */ #define SBC_SB_4 0x00 #define SBC_SB_8 0x01 /* data endianess */ #define SBC_LE 0x00 #define SBC_BE 0x01 #ifndef _SSIZE_T_DEFINED #ifdef _WIN64 typedef __int64 ssize_t; #else typedef int ssize_t; #endif #define _SSIZE_T_DEFINED #endif #define SBC_EXPORT #define SBC_X_BUFFER_SIZE 328 #define SCALE_OUT_BITS 15 //#define SBC_ALIGNED #define SBC_ALWAYS_INLINE inline #define SBCDEC_FIXED_EXTRA_BITS 2 #define SBC_ALIGN_BITS 4 #define SBC_ALIGN_MASK ((1 << (SBC_ALIGN_BITS)) - 1) #define fabs(x) ((x) < 0 ? -(x) : (x)) /* C does not provide an explicit arithmetic shift right but this will always be correct and every compiler *should* generate optimal code */ #define ASR(val, bits) ((-2 >> 1 == -1) ? \ ((int32_t)(val)) >> (bits) : ((int32_t) (val)) / (1 << (bits))) #define SCALE_SPROTO4_TBL 12 #define SCALE_SPROTO8_TBL 14 #define SCALE_NPROTO4_TBL 11 #define SCALE_NPROTO8_TBL 11 #define SCALE4_STAGED1_BITS 15 #define SCALE4_STAGED2_BITS 16 #define SCALE8_STAGED1_BITS 15 #define SCALE8_STAGED2_BITS 16 typedef int32_t sbc_fixed_t; #define SCALE4_STAGED1(src) ASR(src, SCALE4_STAGED1_BITS) #define SCALE4_STAGED2(src) ASR(src, SCALE4_STAGED2_BITS) #define SCALE8_STAGED1(src) ASR(src, SCALE8_STAGED1_BITS) #define SCALE8_STAGED2(src) ASR(src, SCALE8_STAGED2_BITS) #define MULA(a, b, res) ((a) * (b) + (res)) #define MUL(a, b) ((a) * (b)) #define SBC_FIXED_0(val) { val = 0; } #define FIXED_A int32_t /* data type for fixed point accumulator */ #define FIXED_T int16_t /* data type for fixed point constants */ #define SBC_FIXED_EXTRA_BITS 0 #define SS4(val) ASR(val, SCALE_SPROTO4_TBL) #define SS8(val) ASR(val, SCALE_SPROTO8_TBL) #define SN4(val) ASR(val, SCALE_NPROTO4_TBL + 1 + SBCDEC_FIXED_EXTRA_BITS) #define SN8(val) ASR(val, SCALE_NPROTO8_TBL + 1 + SBCDEC_FIXED_EXTRA_BITS) #define SBC_PROTO_FIXED4_SCALE \ ((sizeof(FIXED_T) * CHAR_BIT - 1) - SBC_FIXED_EXTRA_BITS + 1) #define F_PROTO4(x) (FIXED_A) ((x * 2) * \ ((FIXED_A) 1 << (sizeof(FIXED_T) * CHAR_BIT - 1)) + 0.5) #define F(x) F_PROTO4(x) static const FIXED_T _sbc_proto_fixed4[40] = { F(0.00000000E+00), F(5.36548976E-04), -F(1.49188357E-03), F(2.73370904E-03), F(3.83720193E-03), F(3.89205149E-03), F(1.86581691E-03), F(3.06012286E-03), F(1.09137620E-02), F(2.04385087E-02), -F(2.88757392E-02), F(3.21939290E-02), F(2.58767811E-02), F(6.13245186E-03), -F(2.88217274E-02), F(7.76463494E-02), F(1.35593274E-01), F(1.94987841E-01), -F(2.46636662E-01), F(2.81828203E-01), F(2.94315332E-01), F(2.81828203E-01), F(2.46636662E-01), -F(1.94987841E-01), -F(1.35593274E-01), -F(7.76463494E-02), F(2.88217274E-02), F(6.13245186E-03), F(2.58767811E-02), F(3.21939290E-02), F(2.88757392E-02), -F(2.04385087E-02), -F(1.09137620E-02), -F(3.06012286E-03), -F(1.86581691E-03), F(3.89205149E-03), F(3.83720193E-03), F(2.73370904E-03), F(1.49188357E-03), -F(5.36548976E-04), }; #undef F /* * To produce this cosine matrix in Octave: * * b = zeros(4, 8); * for i = 0:3 * for j = 0:7 b(i+1, j+1) = cos((i + 0.5) * (j - 2) * (pi/4)) * endfor * endfor; * printf("%.10f, ", b'); * * Note: in each block of 8 numbers sign was changed for elements 2 and 7 * * Change of sign for element 2 allows to replace constant 1.0 (not * representable in Q15 format) with -1.0 (fine with Q15). * Changed sign for element 7 allows to have more similar constants * and simplify subband filter function code. */ #define SBC_COS_TABLE_FIXED4_SCALE \ ((sizeof(FIXED_T) * CHAR_BIT - 1) + SBC_FIXED_EXTRA_BITS) #define F_COS4(x) (FIXED_A) ((x) * \ ((FIXED_A) 1 << (sizeof(FIXED_T) * CHAR_BIT - 1)) + 0.5) #define F(x) F_COS4(x) static const FIXED_T cos_table_fixed_4[32] = { F(0.7071067812), F(0.9238795325), -F(1.0000000000), F(0.9238795325), F(0.7071067812), F(0.3826834324), F(0.0000000000), F(0.3826834324), -F(0.7071067812), F(0.3826834324), -F(1.0000000000), F(0.3826834324), -F(0.7071067812), -F(0.9238795325), -F(0.0000000000), -F(0.9238795325), -F(0.7071067812), -F(0.3826834324), -F(1.0000000000), -F(0.3826834324), -F(0.7071067812), F(0.9238795325), F(0.0000000000), F(0.9238795325), F(0.7071067812), -F(0.9238795325), -F(1.0000000000), -F(0.9238795325), F(0.7071067812), -F(0.3826834324), -F(0.0000000000), -F(0.3826834324), }; #undef F /* A2DP specification: Section 12.8 Tables * * Original values are premultiplied by 4 for better precision (that is the * maximum which is possible without overflows) * * Note: in each block of 16 numbers sign was changed for elements 4, 13, 14, 15 * in order to compensate the same change applied to cos_table_fixed_8 */ #define SBC_PROTO_FIXED8_SCALE \ ((sizeof(FIXED_T) * CHAR_BIT - 1) - SBC_FIXED_EXTRA_BITS + 1) #define F_PROTO8(x) (FIXED_A) ((x * 2) * \ ((FIXED_A) 1 << (sizeof(FIXED_T) * CHAR_BIT - 1)) + 0.5) #define F(x) F_PROTO8(x) static const FIXED_T _sbc_proto_fixed8[80] = { F(0.00000000E+00), F(1.56575398E-04), F(3.43256425E-04), F(5.54620202E-04), -F(8.23919506E-04), F(1.13992507E-03), F(1.47640169E-03), F(1.78371725E-03), F(2.01182542E-03), F(2.10371989E-03), F(1.99454554E-03), F(1.61656283E-03), F(9.02154502E-04), F(1.78805361E-04), F(1.64973098E-03), F(3.49717454E-03), F(5.65949473E-03), F(8.02941163E-03), F(1.04584443E-02), F(1.27472335E-02), -F(1.46525263E-02), F(1.59045603E-02), F(1.62208471E-02), F(1.53184106E-02), F(1.29371806E-02), F(8.85757540E-03), F(2.92408442E-03), -F(4.91578024E-03), -F(1.46404076E-02), F(2.61098752E-02), F(3.90751381E-02), F(5.31873032E-02), F(6.79989431E-02), F(8.29847578E-02), F(9.75753918E-02), F(1.11196689E-01), -F(1.23264548E-01), F(1.33264415E-01), F(1.40753505E-01), F(1.45389847E-01), F(1.46955068E-01), F(1.45389847E-01), F(1.40753505E-01), F(1.33264415E-01), F(1.23264548E-01), -F(1.11196689E-01), -F(9.75753918E-02), -F(8.29847578E-02), -F(6.79989431E-02), -F(5.31873032E-02), -F(3.90751381E-02), -F(2.61098752E-02), F(1.46404076E-02), -F(4.91578024E-03), F(2.92408442E-03), F(8.85757540E-03), F(1.29371806E-02), F(1.53184106E-02), F(1.62208471E-02), F(1.59045603E-02), F(1.46525263E-02), -F(1.27472335E-02), -F(1.04584443E-02), -F(8.02941163E-03), -F(5.65949473E-03), -F(3.49717454E-03), -F(1.64973098E-03), -F(1.78805361E-04), -F(9.02154502E-04), F(1.61656283E-03), F(1.99454554E-03), F(2.10371989E-03), F(2.01182542E-03), F(1.78371725E-03), F(1.47640169E-03), F(1.13992507E-03), F(8.23919506E-04), -F(5.54620202E-04), -F(3.43256425E-04), -F(1.56575398E-04), }; #undef F /* * To produce this cosine matrix in Octave: * * b = zeros(8, 16); * for i = 0:7 * for j = 0:15 b(i+1, j+1) = cos((i + 0.5) * (j - 4) * (pi/8)) * endfor endfor; * printf("%.10f, ", b'); * * Note: in each block of 16 numbers sign was changed for elements 4, 13, 14, 15 * * Change of sign for element 4 allows to replace constant 1.0 (not * representable in Q15 format) with -1.0 (fine with Q15). * Changed signs for elements 13, 14, 15 allow to have more similar constants * and simplify subband filter function code. */ #define SBC_COS_TABLE_FIXED8_SCALE \ ((sizeof(FIXED_T) * CHAR_BIT - 1) + SBC_FIXED_EXTRA_BITS) #define F_COS8(x) (FIXED_A) ((x) * \ ((FIXED_A) 1 << (sizeof(FIXED_T) * CHAR_BIT - 1)) + 0.5) #define F(x) F_COS8(x) static const FIXED_T cos_table_fixed_8[128] = { F(0.7071067812), F(0.8314696123), F(0.9238795325), F(0.9807852804), -F(1.0000000000), F(0.9807852804), F(0.9238795325), F(0.8314696123), F(0.7071067812), F(0.5555702330), F(0.3826834324), F(0.1950903220), F(0.0000000000), F(0.1950903220), F(0.3826834324), F(0.5555702330), -F(0.7071067812), -F(0.1950903220), F(0.3826834324), F(0.8314696123), -F(1.0000000000), F(0.8314696123), F(0.3826834324), -F(0.1950903220), -F(0.7071067812), -F(0.9807852804), -F(0.9238795325), -F(0.5555702330), -F(0.0000000000), -F(0.5555702330), -F(0.9238795325), -F(0.9807852804), -F(0.7071067812), -F(0.9807852804), -F(0.3826834324), F(0.5555702330), -F(1.0000000000), F(0.5555702330), -F(0.3826834324), -F(0.9807852804), -F(0.7071067812), F(0.1950903220), F(0.9238795325), F(0.8314696123), F(0.0000000000), F(0.8314696123), F(0.9238795325), F(0.1950903220), F(0.7071067812), -F(0.5555702330), -F(0.9238795325), F(0.1950903220), -F(1.0000000000), F(0.1950903220), -F(0.9238795325), -F(0.5555702330), F(0.7071067812), F(0.8314696123), -F(0.3826834324), -F(0.9807852804), -F(0.0000000000), -F(0.9807852804), -F(0.3826834324), F(0.8314696123), F(0.7071067812), F(0.5555702330), -F(0.9238795325), -F(0.1950903220), -F(1.0000000000), -F(0.1950903220), -F(0.9238795325), F(0.5555702330), F(0.7071067812), -F(0.8314696123), -F(0.3826834324), F(0.9807852804), F(0.0000000000), F(0.9807852804), -F(0.3826834324), -F(0.8314696123), -F(0.7071067812), F(0.9807852804), -F(0.3826834324), -F(0.5555702330), -F(1.0000000000), -F(0.5555702330), -F(0.3826834324), F(0.9807852804), -F(0.7071067812), -F(0.1950903220), F(0.9238795325), -F(0.8314696123), -F(0.0000000000), -F(0.8314696123), F(0.9238795325), -F(0.1950903220), -F(0.7071067812), F(0.1950903220), F(0.3826834324), -F(0.8314696123), -F(1.0000000000), -F(0.8314696123), F(0.3826834324), F(0.1950903220), -F(0.7071067812), F(0.9807852804), -F(0.9238795325), F(0.5555702330), -F(0.0000000000), F(0.5555702330), -F(0.9238795325), F(0.9807852804), F(0.7071067812), -F(0.8314696123), F(0.9238795325), -F(0.9807852804), -F(1.0000000000), -F(0.9807852804), F(0.9238795325), -F(0.8314696123), F(0.7071067812), -F(0.5555702330), F(0.3826834324), -F(0.1950903220), -F(0.0000000000), -F(0.1950903220), F(0.3826834324), -F(0.5555702330), }; #undef F /* * Enforce 16 byte alignment for the data, which is supposed to be used * with SIMD optimized code. */ #define SBC_ALIGN_BITS 4 #define SBC_ALIGN_MASK ((1 << (SBC_ALIGN_BITS)) - 1) #ifdef __GNUC__ #define SBC_ALIGNED __attribute__((aligned(1 << (SBC_ALIGN_BITS)))) #else #define SBC_ALIGNED #endif /* * Constant tables for the use in SIMD optimized analysis filters * Each table consists of two parts: * 1. reordered "proto" table * 2. reordered "cos" table * * Due to non-symmetrical reordering, separate tables for "even" * and "odd" cases are needed */ static const FIXED_T SBC_ALIGNED analysis_consts_fixed4_simd_even[40 + 16] = { #define C0 1.0932568993 #define C1 1.3056875580 #define C2 1.3056875580 #define C3 1.6772280856 #define F(x) F_PROTO4(x) F(0.00000000E+00 * C0), F(3.83720193E-03 * C0), F(5.36548976E-04 * C1), F(2.73370904E-03 * C1), F(3.06012286E-03 * C2), F(3.89205149E-03 * C2), F(0.00000000E+00 * C3), -F(1.49188357E-03 * C3), F(1.09137620E-02 * C0), F(2.58767811E-02 * C0), F(2.04385087E-02 * C1), F(3.21939290E-02 * C1), F(7.76463494E-02 * C2), F(6.13245186E-03 * C2), F(0.00000000E+00 * C3), -F(2.88757392E-02 * C3), F(1.35593274E-01 * C0), F(2.94315332E-01 * C0), F(1.94987841E-01 * C1), F(2.81828203E-01 * C1), -F(1.94987841E-01 * C2), F(2.81828203E-01 * C2), F(0.00000000E+00 * C3), -F(2.46636662E-01 * C3), -F(1.35593274E-01 * C0), F(2.58767811E-02 * C0), -F(7.76463494E-02 * C1), F(6.13245186E-03 * C1), -F(2.04385087E-02 * C2), F(3.21939290E-02 * C2), F(0.00000000E+00 * C3), F(2.88217274E-02 * C3), -F(1.09137620E-02 * C0), F(3.83720193E-03 * C0), -F(3.06012286E-03 * C1), F(3.89205149E-03 * C1), -F(5.36548976E-04 * C2), F(2.73370904E-03 * C2), F(0.00000000E+00 * C3), -F(1.86581691E-03 * C3), #undef F #define F(x) F_COS4(x) F(0.7071067812 / C0), F(0.9238795325 / C1), -F(0.7071067812 / C0), F(0.3826834324 / C1), -F(0.7071067812 / C0), -F(0.3826834324 / C1), F(0.7071067812 / C0), -F(0.9238795325 / C1), F(0.3826834324 / C2), -F(1.0000000000 / C3), -F(0.9238795325 / C2), -F(1.0000000000 / C3), F(0.9238795325 / C2), -F(1.0000000000 / C3), -F(0.3826834324 / C2), -F(1.0000000000 / C3), #undef F #undef C0 #undef C1 #undef C2 #undef C3 }; static const FIXED_T SBC_ALIGNED analysis_consts_fixed4_simd_odd[40 + 16] = { #define C0 1.3056875580 #define C1 1.6772280856 #define C2 1.0932568993 #define C3 1.3056875580 #define F(x) F_PROTO4(x) F(2.73370904E-03 * C0), F(5.36548976E-04 * C0), -F(1.49188357E-03 * C1), F(0.00000000E+00 * C1), F(3.83720193E-03 * C2), F(1.09137620E-02 * C2), F(3.89205149E-03 * C3), F(3.06012286E-03 * C3), F(3.21939290E-02 * C0), F(2.04385087E-02 * C0), -F(2.88757392E-02 * C1), F(0.00000000E+00 * C1), F(2.58767811E-02 * C2), F(1.35593274E-01 * C2), F(6.13245186E-03 * C3), F(7.76463494E-02 * C3), F(2.81828203E-01 * C0), F(1.94987841E-01 * C0), -F(2.46636662E-01 * C1), F(0.00000000E+00 * C1), F(2.94315332E-01 * C2), -F(1.35593274E-01 * C2), F(2.81828203E-01 * C3), -F(1.94987841E-01 * C3), F(6.13245186E-03 * C0), -F(7.76463494E-02 * C0), F(2.88217274E-02 * C1), F(0.00000000E+00 * C1), F(2.58767811E-02 * C2), -F(1.09137620E-02 * C2), F(3.21939290E-02 * C3), -F(2.04385087E-02 * C3), F(3.89205149E-03 * C0), -F(3.06012286E-03 * C0), -F(1.86581691E-03 * C1), F(0.00000000E+00 * C1), F(3.83720193E-03 * C2), F(0.00000000E+00 * C2), F(2.73370904E-03 * C3), -F(5.36548976E-04 * C3), #undef F #define F(x) F_COS4(x) F(0.9238795325 / C0), -F(1.0000000000 / C1), F(0.3826834324 / C0), -F(1.0000000000 / C1), -F(0.3826834324 / C0), -F(1.0000000000 / C1), -F(0.9238795325 / C0), -F(1.0000000000 / C1), F(0.7071067812 / C2), F(0.3826834324 / C3), -F(0.7071067812 / C2), -F(0.9238795325 / C3), -F(0.7071067812 / C2), F(0.9238795325 / C3), F(0.7071067812 / C2), -F(0.3826834324 / C3), #undef F #undef C0 #undef C1 #undef C2 #undef C3 }; static const FIXED_T SBC_ALIGNED analysis_consts_fixed8_simd_even[80 + 64] = { #define C0 2.7906148894 #define C1 2.4270044280 #define C2 2.8015616024 #define C3 3.1710363741 #define C4 2.5377944043 #define C5 2.4270044280 #define C6 2.8015616024 #define C7 3.1710363741 #define F(x) F_PROTO8(x) F(0.00000000E+00 * C0), F(2.01182542E-03 * C0), F(1.56575398E-04 * C1), F(1.78371725E-03 * C1), F(3.43256425E-04 * C2), F(1.47640169E-03 * C2), F(5.54620202E-04 * C3), F(1.13992507E-03 * C3), -F(8.23919506E-04 * C4), F(0.00000000E+00 * C4), F(2.10371989E-03 * C5), F(3.49717454E-03 * C5), F(1.99454554E-03 * C6), F(1.64973098E-03 * C6), F(1.61656283E-03 * C7), F(1.78805361E-04 * C7), F(5.65949473E-03 * C0), F(1.29371806E-02 * C0), F(8.02941163E-03 * C1), F(1.53184106E-02 * C1), F(1.04584443E-02 * C2), F(1.62208471E-02 * C2), F(1.27472335E-02 * C3), F(1.59045603E-02 * C3), -F(1.46525263E-02 * C4), F(0.00000000E+00 * C4), F(8.85757540E-03 * C5), F(5.31873032E-02 * C5), F(2.92408442E-03 * C6), F(3.90751381E-02 * C6), -F(4.91578024E-03 * C7), F(2.61098752E-02 * C7), F(6.79989431E-02 * C0), F(1.46955068E-01 * C0), F(8.29847578E-02 * C1), F(1.45389847E-01 * C1), F(9.75753918E-02 * C2), F(1.40753505E-01 * C2), F(1.11196689E-01 * C3), F(1.33264415E-01 * C3), -F(1.23264548E-01 * C4), F(0.00000000E+00 * C4), F(1.45389847E-01 * C5), -F(8.29847578E-02 * C5), F(1.40753505E-01 * C6), -F(9.75753918E-02 * C6), F(1.33264415E-01 * C7), -F(1.11196689E-01 * C7), -F(6.79989431E-02 * C0), F(1.29371806E-02 * C0), -F(5.31873032E-02 * C1), F(8.85757540E-03 * C1), -F(3.90751381E-02 * C2), F(2.92408442E-03 * C2), -F(2.61098752E-02 * C3), -F(4.91578024E-03 * C3), F(1.46404076E-02 * C4), F(0.00000000E+00 * C4), F(1.53184106E-02 * C5), -F(8.02941163E-03 * C5), F(1.62208471E-02 * C6), -F(1.04584443E-02 * C6), F(1.59045603E-02 * C7), -F(1.27472335E-02 * C7), -F(5.65949473E-03 * C0), F(2.01182542E-03 * C0), -F(3.49717454E-03 * C1), F(2.10371989E-03 * C1), -F(1.64973098E-03 * C2), F(1.99454554E-03 * C2), -F(1.78805361E-04 * C3), F(1.61656283E-03 * C3), -F(9.02154502E-04 * C4), F(0.00000000E+00 * C4), F(1.78371725E-03 * C5), -F(1.56575398E-04 * C5), F(1.47640169E-03 * C6), -F(3.43256425E-04 * C6), F(1.13992507E-03 * C7), -F(5.54620202E-04 * C7), #undef F #define F(x) F_COS8(x) F(0.7071067812 / C0), F(0.8314696123 / C1), -F(0.7071067812 / C0), -F(0.1950903220 / C1), -F(0.7071067812 / C0), -F(0.9807852804 / C1), F(0.7071067812 / C0), -F(0.5555702330 / C1), F(0.7071067812 / C0), F(0.5555702330 / C1), -F(0.7071067812 / C0), F(0.9807852804 / C1), -F(0.7071067812 / C0), F(0.1950903220 / C1), F(0.7071067812 / C0), -F(0.8314696123 / C1), F(0.9238795325 / C2), F(0.9807852804 / C3), F(0.3826834324 / C2), F(0.8314696123 / C3), -F(0.3826834324 / C2), F(0.5555702330 / C3), -F(0.9238795325 / C2), F(0.1950903220 / C3), -F(0.9238795325 / C2), -F(0.1950903220 / C3), -F(0.3826834324 / C2), -F(0.5555702330 / C3), F(0.3826834324 / C2), -F(0.8314696123 / C3), F(0.9238795325 / C2), -F(0.9807852804 / C3), -F(1.0000000000 / C4), F(0.5555702330 / C5), -F(1.0000000000 / C4), -F(0.9807852804 / C5), -F(1.0000000000 / C4), F(0.1950903220 / C5), -F(1.0000000000 / C4), F(0.8314696123 / C5), -F(1.0000000000 / C4), -F(0.8314696123 / C5), -F(1.0000000000 / C4), -F(0.1950903220 / C5), -F(1.0000000000 / C4), F(0.9807852804 / C5), -F(1.0000000000 / C4), -F(0.5555702330 / C5), F(0.3826834324 / C6), F(0.1950903220 / C7), -F(0.9238795325 / C6), -F(0.5555702330 / C7), F(0.9238795325 / C6), F(0.8314696123 / C7), -F(0.3826834324 / C6), -F(0.9807852804 / C7), -F(0.3826834324 / C6), F(0.9807852804 / C7), F(0.9238795325 / C6), -F(0.8314696123 / C7), -F(0.9238795325 / C6), F(0.5555702330 / C7), F(0.3826834324 / C6), -F(0.1950903220 / C7), #undef F #undef C0 #undef C1 #undef C2 #undef C3 #undef C4 #undef C5 #undef C6 #undef C7 }; static const FIXED_T SBC_ALIGNED analysis_consts_fixed8_simd_odd[80 + 64] = { #define C0 2.5377944043 #define C1 2.4270044280 #define C2 2.8015616024 #define C3 3.1710363741 #define C4 2.7906148894 #define C5 2.4270044280 #define C6 2.8015616024 #define C7 3.1710363741 #define F(x) F_PROTO8(x) F(0.00000000E+00 * C0), -F(8.23919506E-04 * C0), F(1.56575398E-04 * C1), F(1.78371725E-03 * C1), F(3.43256425E-04 * C2), F(1.47640169E-03 * C2), F(5.54620202E-04 * C3), F(1.13992507E-03 * C3), F(2.01182542E-03 * C4), F(5.65949473E-03 * C4), F(2.10371989E-03 * C5), F(3.49717454E-03 * C5), F(1.99454554E-03 * C6), F(1.64973098E-03 * C6), F(1.61656283E-03 * C7), F(1.78805361E-04 * C7), F(0.00000000E+00 * C0), -F(1.46525263E-02 * C0), F(8.02941163E-03 * C1), F(1.53184106E-02 * C1), F(1.04584443E-02 * C2), F(1.62208471E-02 * C2), F(1.27472335E-02 * C3), F(1.59045603E-02 * C3), F(1.29371806E-02 * C4), F(6.79989431E-02 * C4), F(8.85757540E-03 * C5), F(5.31873032E-02 * C5), F(2.92408442E-03 * C6), F(3.90751381E-02 * C6), -F(4.91578024E-03 * C7), F(2.61098752E-02 * C7), F(0.00000000E+00 * C0), -F(1.23264548E-01 * C0), F(8.29847578E-02 * C1), F(1.45389847E-01 * C1), F(9.75753918E-02 * C2), F(1.40753505E-01 * C2), F(1.11196689E-01 * C3), F(1.33264415E-01 * C3), F(1.46955068E-01 * C4), -F(6.79989431E-02 * C4), F(1.45389847E-01 * C5), -F(8.29847578E-02 * C5), F(1.40753505E-01 * C6), -F(9.75753918E-02 * C6), F(1.33264415E-01 * C7), -F(1.11196689E-01 * C7), F(0.00000000E+00 * C0), F(1.46404076E-02 * C0), -F(5.31873032E-02 * C1), F(8.85757540E-03 * C1), -F(3.90751381E-02 * C2), F(2.92408442E-03 * C2), -F(2.61098752E-02 * C3), -F(4.91578024E-03 * C3), F(1.29371806E-02 * C4), -F(5.65949473E-03 * C4), F(1.53184106E-02 * C5), -F(8.02941163E-03 * C5), F(1.62208471E-02 * C6), -F(1.04584443E-02 * C6), F(1.59045603E-02 * C7), -F(1.27472335E-02 * C7), F(0.00000000E+00 * C0), -F(9.02154502E-04 * C0), -F(3.49717454E-03 * C1), F(2.10371989E-03 * C1), -F(1.64973098E-03 * C2), F(1.99454554E-03 * C2), -F(1.78805361E-04 * C3), F(1.61656283E-03 * C3), F(2.01182542E-03 * C4), F(0.00000000E+00 * C4), F(1.78371725E-03 * C5), -F(1.56575398E-04 * C5), F(1.47640169E-03 * C6), -F(3.43256425E-04 * C6), F(1.13992507E-03 * C7), -F(5.54620202E-04 * C7), #undef F #define F(x) F_COS8(x) -F(1.0000000000 / C0), F(0.8314696123 / C1), -F(1.0000000000 / C0), -F(0.1950903220 / C1), -F(1.0000000000 / C0), -F(0.9807852804 / C1), -F(1.0000000000 / C0), -F(0.5555702330 / C1), -F(1.0000000000 / C0), F(0.5555702330 / C1), -F(1.0000000000 / C0), F(0.9807852804 / C1), -F(1.0000000000 / C0), F(0.1950903220 / C1), -F(1.0000000000 / C0), -F(0.8314696123 / C1), F(0.9238795325 / C2), F(0.9807852804 / C3), F(0.3826834324 / C2), F(0.8314696123 / C3), -F(0.3826834324 / C2), F(0.5555702330 / C3), -F(0.9238795325 / C2), F(0.1950903220 / C3), -F(0.9238795325 / C2), -F(0.1950903220 / C3), -F(0.3826834324 / C2), -F(0.5555702330 / C3), F(0.3826834324 / C2), -F(0.8314696123 / C3), F(0.9238795325 / C2), -F(0.9807852804 / C3), F(0.7071067812 / C4), F(0.5555702330 / C5), -F(0.7071067812 / C4), -F(0.9807852804 / C5), -F(0.7071067812 / C4), F(0.1950903220 / C5), F(0.7071067812 / C4), F(0.8314696123 / C5), F(0.7071067812 / C4), -F(0.8314696123 / C5), -F(0.7071067812 / C4), -F(0.1950903220 / C5), -F(0.7071067812 / C4), F(0.9807852804 / C5), F(0.7071067812 / C4), -F(0.5555702330 / C5), F(0.3826834324 / C6), F(0.1950903220 / C7), -F(0.9238795325 / C6), -F(0.5555702330 / C7), F(0.9238795325 / C6), F(0.8314696123 / C7), -F(0.3826834324 / C6), -F(0.9807852804 / C7), -F(0.3826834324 / C6), F(0.9807852804 / C7), F(0.9238795325 / C6), -F(0.8314696123 / C7), -F(0.9238795325 / C6), F(0.5555702330 / C7), F(0.3826834324 / C6), -F(0.1950903220 / C7), #undef F #undef C0 #undef C1 #undef C2 #undef C3 #undef C4 #undef C5 #undef C6 #undef C7 }; static const int32_t sbc_proto_4_40m0[] = { SS4(0x00000000), SS4(0xffa6982f), SS4(0xfba93848), SS4(0x0456c7b8), SS4(0x005967d1), SS4(0xfffb9ac7), SS4(0xff589157), SS4(0xf9c2a8d8), SS4(0x027c1434), SS4(0x0019118b), SS4(0xfff3c74c), SS4(0xff137330), SS4(0xf81b8d70), SS4(0x00ec1b8b), SS4(0xfff0b71a), SS4(0xffe99b00), SS4(0xfef84470), SS4(0xf6fb4370), SS4(0xffcdc351), SS4(0xffe01dc7) }; static const int32_t sbc_proto_4_40m1[] = { SS4(0xffe090ce), SS4(0xff2c0475), SS4(0xf694f800), SS4(0xff2c0475), SS4(0xffe090ce), SS4(0xffe01dc7), SS4(0xffcdc351), SS4(0xf6fb4370), SS4(0xfef84470), SS4(0xffe99b00), SS4(0xfff0b71a), SS4(0x00ec1b8b), SS4(0xf81b8d70), SS4(0xff137330), SS4(0xfff3c74c), SS4(0x0019118b), SS4(0x027c1434), SS4(0xf9c2a8d8), SS4(0xff589157), SS4(0xfffb9ac7) }; static const int32_t sbc_proto_8_80m0[] = { SS8(0x00000000), SS8(0xfe8d1970), SS8(0xee979f00), SS8(0x11686100), SS8(0x0172e690), SS8(0xfff5bd1a), SS8(0xfdf1c8d4), SS8(0xeac182c0), SS8(0x0d9daee0), SS8(0x00e530da), SS8(0xffe9811d), SS8(0xfd52986c), SS8(0xe7054ca0), SS8(0x0a00d410), SS8(0x006c1de4), SS8(0xffdba705), SS8(0xfcbc98e8), SS8(0xe3889d20), SS8(0x06af2308), SS8(0x000bb7db), SS8(0xffca00ed), SS8(0xfc3fbb68), SS8(0xe071bc00), SS8(0x03bf7948), SS8(0xffc4e05c), SS8(0xffb54b3b), SS8(0xfbedadc0), SS8(0xdde26200), SS8(0x0142291c), SS8(0xff960e94), SS8(0xff9f3e17), SS8(0xfbd8f358), SS8(0xdbf79400), SS8(0xff405e01), SS8(0xff7d4914), SS8(0xff8b1a31), SS8(0xfc1417b8), SS8(0xdac7bb40), SS8(0xfdbb828c), SS8(0xff762170) }; static const int32_t sbc_proto_8_80m1[] = { SS8(0xff7c272c), SS8(0xfcb02620), SS8(0xda612700), SS8(0xfcb02620), SS8(0xff7c272c), SS8(0xff762170), SS8(0xfdbb828c), SS8(0xdac7bb40), SS8(0xfc1417b8), SS8(0xff8b1a31), SS8(0xff7d4914), SS8(0xff405e01), SS8(0xdbf79400), SS8(0xfbd8f358), SS8(0xff9f3e17), SS8(0xff960e94), SS8(0x0142291c), SS8(0xdde26200), SS8(0xfbedadc0), SS8(0xffb54b3b), SS8(0xffc4e05c), SS8(0x03bf7948), SS8(0xe071bc00), SS8(0xfc3fbb68), SS8(0xffca00ed), SS8(0x000bb7db), SS8(0x06af2308), SS8(0xe3889d20), SS8(0xfcbc98e8), SS8(0xffdba705), SS8(0x006c1de4), SS8(0x0a00d410), SS8(0xe7054ca0), SS8(0xfd52986c), SS8(0xffe9811d), SS8(0x00e530da), SS8(0x0d9daee0), SS8(0xeac182c0), SS8(0xfdf1c8d4), SS8(0xfff5bd1a) }; static const int32_t synmatrix4[8][4] = { { SN4(0x05a82798), SN4(0xfa57d868), SN4(0xfa57d868), SN4(0x05a82798) }, { SN4(0x030fbc54), SN4(0xf89be510), SN4(0x07641af0), SN4(0xfcf043ac) }, { SN4(0x00000000), SN4(0x00000000), SN4(0x00000000), SN4(0x00000000) }, { SN4(0xfcf043ac), SN4(0x07641af0), SN4(0xf89be510), SN4(0x030fbc54) }, { SN4(0xfa57d868), SN4(0x05a82798), SN4(0x05a82798), SN4(0xfa57d868) }, { SN4(0xf89be510), SN4(0xfcf043ac), SN4(0x030fbc54), SN4(0x07641af0) }, { SN4(0xf8000000), SN4(0xf8000000), SN4(0xf8000000), SN4(0xf8000000) }, { SN4(0xf89be510), SN4(0xfcf043ac), SN4(0x030fbc54), SN4(0x07641af0) } }; static const int32_t synmatrix8[16][8] = { { SN8(0x05a82798), SN8(0xfa57d868), SN8(0xfa57d868), SN8(0x05a82798), SN8(0x05a82798), SN8(0xfa57d868), SN8(0xfa57d868), SN8(0x05a82798) }, { SN8(0x0471ced0), SN8(0xf8275a10), SN8(0x018f8b84), SN8(0x06a6d988), SN8(0xf9592678), SN8(0xfe70747c), SN8(0x07d8a5f0), SN8(0xfb8e3130) }, { SN8(0x030fbc54), SN8(0xf89be510), SN8(0x07641af0), SN8(0xfcf043ac), SN8(0xfcf043ac), SN8(0x07641af0), SN8(0xf89be510), SN8(0x030fbc54) }, { SN8(0x018f8b84), SN8(0xfb8e3130), SN8(0x06a6d988), SN8(0xf8275a10), SN8(0x07d8a5f0), SN8(0xf9592678), SN8(0x0471ced0), SN8(0xfe70747c) }, { SN8(0x00000000), SN8(0x00000000), SN8(0x00000000), SN8(0x00000000), SN8(0x00000000), SN8(0x00000000), SN8(0x00000000), SN8(0x00000000) }, { SN8(0xfe70747c), SN8(0x0471ced0), SN8(0xf9592678), SN8(0x07d8a5f0), SN8(0xf8275a10), SN8(0x06a6d988), SN8(0xfb8e3130), SN8(0x018f8b84) }, { SN8(0xfcf043ac), SN8(0x07641af0), SN8(0xf89be510), SN8(0x030fbc54), SN8(0x030fbc54), SN8(0xf89be510), SN8(0x07641af0), SN8(0xfcf043ac) }, { SN8(0xfb8e3130), SN8(0x07d8a5f0), SN8(0xfe70747c), SN8(0xf9592678), SN8(0x06a6d988), SN8(0x018f8b84), SN8(0xf8275a10), SN8(0x0471ced0) }, { SN8(0xfa57d868), SN8(0x05a82798), SN8(0x05a82798), SN8(0xfa57d868), SN8(0xfa57d868), SN8(0x05a82798), SN8(0x05a82798), SN8(0xfa57d868) }, { SN8(0xf9592678), SN8(0x018f8b84), SN8(0x07d8a5f0), SN8(0x0471ced0), SN8(0xfb8e3130), SN8(0xf8275a10), SN8(0xfe70747c), SN8(0x06a6d988) }, { SN8(0xf89be510), SN8(0xfcf043ac), SN8(0x030fbc54), SN8(0x07641af0), SN8(0x07641af0), SN8(0x030fbc54), SN8(0xfcf043ac), SN8(0xf89be510) }, { SN8(0xf8275a10), SN8(0xf9592678), SN8(0xfb8e3130), SN8(0xfe70747c), SN8(0x018f8b84), SN8(0x0471ced0), SN8(0x06a6d988), SN8(0x07d8a5f0) }, { SN8(0xf8000000), SN8(0xf8000000), SN8(0xf8000000), SN8(0xf8000000), SN8(0xf8000000), SN8(0xf8000000), SN8(0xf8000000), SN8(0xf8000000) }, { SN8(0xf8275a10), SN8(0xf9592678), SN8(0xfb8e3130), SN8(0xfe70747c), SN8(0x018f8b84), SN8(0x0471ced0), SN8(0x06a6d988), SN8(0x07d8a5f0) }, { SN8(0xf89be510), SN8(0xfcf043ac), SN8(0x030fbc54), SN8(0x07641af0), SN8(0x07641af0), SN8(0x030fbc54), SN8(0xfcf043ac), SN8(0xf89be510) }, { SN8(0xf9592678), SN8(0x018f8b84), SN8(0x07d8a5f0), SN8(0x0471ced0), SN8(0xfb8e3130), SN8(0xf8275a10), SN8(0xfe70747c), SN8(0x06a6d988) } }; struct sbc_encoder_state { int position; /* Number of consecutive blocks handled by the encoder */ uint8_t increment; int16_t SBC_ALIGNED X[2][SBC_X_BUFFER_SIZE]; /* Polyphase analysis filter for 4 subbands configuration, * it handles "increment" blocks at once */ void (*sbc_analyze_4s)(struct sbc_encoder_state *state, int16_t *x, int32_t *out, int out_stride); /* Polyphase analysis filter for 8 subbands configuration, * it handles "increment" blocks at once */ void (*sbc_analyze_8s)(struct sbc_encoder_state *state, int16_t *x, int32_t *out, int out_stride); /* Process input data (deinterleave, endian conversion, reordering), * depending on the number of subbands and input data byte order */ int (*sbc_enc_process_input_4s_le)(int position, const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE], int nsamples, int nchannels); int (*sbc_enc_process_input_4s_be)(int position, const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE], int nsamples, int nchannels); int (*sbc_enc_process_input_8s_le)(int position, const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE], int nsamples, int nchannels); int (*sbc_enc_process_input_8s_be)(int position, const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE], int nsamples, int nchannels); /* Scale factors calculation */ void (*sbc_calc_scalefactors)(int32_t sb_sample_f[16][2][8], uint32_t scale_factor[2][8], int blocks, int channels, int subbands); /* Scale factors calculation with joint stereo support */ int (*sbc_calc_scalefactors_j)(int32_t sb_sample_f[16][2][8], uint32_t scale_factor[2][8], int blocks, int subbands); const char *implementation_info; }; /* A2DP specification: Appendix B, page 69 */ static const int sbc_offset4[4][4] = { { -1, 0, 0, 0 }, { -2, 0, 0, 1 }, { -2, 0, 0, 1 }, { -2, 0, 0, 1 } }; /* A2DP specification: Appendix B, page 69 */ static const int sbc_offset8[4][8] = { { -2, 0, 0, 0, 0, 0, 0, 1 }, { -3, 0, 0, 0, 0, 0, 1, 2 }, { -4, 0, 0, 0, 0, 0, 1, 2 }, { -4, 0, 0, 0, 0, 0, 1, 2 } }; struct sbc_struct { unsigned long flags; uint8_t frequency; uint8_t blocks; uint8_t subbands; uint8_t mode; uint8_t allocation; uint8_t bitpool; uint8_t endian; void *priv; void *priv_alloc_base; }; typedef struct sbc_struct sbc_t; int sbc_init(sbc_t *sbc, unsigned long flags); int sbc_reinit(sbc_t *sbc, unsigned long flags); int sbc_init_msbc(sbc_t *sbc, unsigned long flags); int sbc_init_a2dp(sbc_t *sbc, unsigned long flags, const void *conf, size_t conf_len); int sbc_reinit_a2dp(sbc_t *sbc, unsigned long flags, const void *conf, size_t conf_len); ssize_t sbc_parse(sbc_t *sbc, const void *input, size_t input_len); /* Decodes ONE input block into ONE output block */ ssize_t sbc_decode(sbc_t *sbc, const void *input, size_t input_len, void *output, size_t output_len, size_t *written); /* Encodes ONE input block into ONE output block */ ssize_t sbc_encode(sbc_t *sbc, const void *input, size_t input_len, void *output, size_t output_len, ssize_t *written); /* Returns the output block size in bytes */ size_t sbc_get_frame_length(sbc_t *sbc); /* Returns the time one input/output block takes to play in msec*/ unsigned sbc_get_frame_duration(sbc_t *sbc); /* Returns the input block size in bytes */ size_t sbc_get_codesize(sbc_t *sbc); const char *sbc_get_implementation_info(sbc_t *sbc); void sbc_finish(sbc_t *sbc); void pcm_to_sbc(char *filename, char *output, int msbc); void sbc_to_pcm(char *filename, char *output, int msbc); void sbc_init_primitives(struct sbc_encoder_state *state); void sbc_decode_init(sbc_t *sbc, int msbc); ssize_t sbc_decoder_decode(sbc_t *sbc, const void *input, size_t input_len, void *output, size_t output_len, size_t *written); void sbc_decoder_uninit(sbc_t *sbc); void sbc_encode_init(sbc_t *sbc, int msbc); ssize_t sbc_encoder_encode(sbc_t *sbc, const void *input, size_t input_len, void *output, size_t output_len, ssize_t *written); void sbc_encoder_uninit(sbc_t *sbc); #ifdef __cplusplus } #endif #endif /* __SBC_H */