//***************************************************************************** // // am_hal_rtc.c //! @file //! //! @brief Functions for interfacing with the Real-Time Clock (RTC). //! //! @addtogroup rtc2 Real-Time Clock (RTC) //! @ingroup apollo2hal //! @{ // //***************************************************************************** //***************************************************************************** // // Copyright (c) 2020, Ambiq Micro // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its // contributors may be used to endorse or promote products derived from this // software without specific prior written permission. // // Third party software included in this distribution is subject to the // additional license terms as defined in the /docs/licenses directory. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // This is part of revision 2.4.2 of the AmbiqSuite Development Package. // //***************************************************************************** #include #include #include "am_mcu_apollo.h" //***************************************************************************** // // Converts a Binary Coded Decimal (BCD) byte to its Decimal form. // //***************************************************************************** static uint8_t bcd_to_dec(uint8_t ui8BCDByte) { return (((ui8BCDByte & 0xF0) >> 4) * 10) + (ui8BCDByte & 0x0F); } //***************************************************************************** // // Converts a Decimal byte to its Binary Coded Decimal (BCD) form. // //***************************************************************************** static uint8_t dec_to_bcd(uint8_t ui8DecimalByte) { return (((ui8DecimalByte / 10) << 4) | (ui8DecimalByte % 10)); } //***************************************************************************** // //! @brief Selects the clock source for the RTC. //! //! @param ui32OSC the clock source for the RTC. //! //! This function selects the clock source for the RTC. //! //! Valid values for ui32OSC are: //! //! AM_HAL_RTC_OSC_LFRC //! AM_HAL_RTC_OSC_XT //! //! @return None //! //! @note After selection of the RTC oscillator, a 2 second delay occurs before //! the new setting is reflected in status. Therefore the CLKGEN.STATUS.OMODE //! bit will not reflect the new status until after the 2s wait period. // //***************************************************************************** void am_hal_rtc_osc_select(uint32_t ui32OSC) { // // Set XT if flag is set. // Otherwise configure for LFRC. // if (ui32OSC) { AM_REG(CLKGEN, OCTRL) |= AM_REG_CLKGEN_OCTRL_OSEL_M; } else { AM_REG(CLKGEN, OCTRL) &= ~AM_REG_CLKGEN_OCTRL_OSEL_M; } } //***************************************************************************** // //! @brief Enable/Start the RTC oscillator. //! //! Starts the RTC oscillator. //! //! @return None. // //***************************************************************************** void am_hal_rtc_osc_enable(void) { // // Start the RTC Oscillator. // AM_REG(RTC, RTCCTL) &= ~AM_REG_RTC_RTCCTL_RSTOP(1); } //***************************************************************************** // //! @brief Disable/Stop the RTC oscillator. //! //! Stops the RTC oscillator. //! //! @return None. // //***************************************************************************** void am_hal_rtc_osc_disable(void) { // // Stop the RTC Oscillator. // AM_REG(RTC, RTCCTL) |= AM_REG_RTC_RTCCTL_RSTOP(1); } //***************************************************************************** // //! @brief Configures the RTC for 12 or 24 hour time keeping. //! //! @param b12Hour - A 'true' configures the RTC for 12 hour time keeping. //! //! Configures the RTC for 12 (true) or 24 (false) hour time keeping. //! //! @return None. // //***************************************************************************** void am_hal_rtc_time_12hour(bool b12Hour) { // // Set the 12/24 hour bit. // AM_REG(RTC, RTCCTL) |= AM_REG_RTC_RTCCTL_HR1224(b12Hour); } //***************************************************************************** // //! @brief Enable selected RTC interrupts. //! //! @param ui32Interrupt - desired interrupts //! //! Enables the RTC interrupts. //! //! ui32Interrupt should be an OR of the following: //! //! AM_HAL_RTC_INT_ALM //! AM_HAL_RTC_INT_OF //! AM_HAL_RTC_INT_ACC //! AM_HAL_RTC_INT_ACF //! //! @return None. // //***************************************************************************** void am_hal_rtc_int_enable(uint32_t ui32Interrupt) { // // Enable the interrupts. // AM_REG(RTC, INTEN) |= ui32Interrupt; } //***************************************************************************** // //! @brief Return the enabled RTC interrupts. //! //! Returns the enabled RTC interrupts. //! //! @return enabled RTC interrupts. Return is a logical or of: //! //! AM_HAL_RTC_INT_ALM //! AM_HAL_RTC_INT_OF //! AM_HAL_RTC_INT_ACC //! AM_HAL_RTC_INT_ACF // //***************************************************************************** uint32_t am_hal_rtc_int_enable_get(void) { // // Read the RTC interrupt enable register, and return its contents. // return AM_REG(RTC, INTEN); } //***************************************************************************** // //! @brief Disable selected RTC interrupts. //! //! @param ui32Interrupt - desired interrupts //! //! Disables the RTC interrupts. //! //! ui32Interrupt should be an OR of the following: //! //! AM_HAL_RTC_INT_ALM //! AM_HAL_RTC_INT_OF //! AM_HAL_RTC_INT_ACC //! AM_HAL_RTC_INT_ACF //! //! @return None. // //***************************************************************************** void am_hal_rtc_int_disable(uint32_t ui32Interrupt) { // // Disable the interrupts. // AM_REG(RTC, INTEN) &= ~ui32Interrupt; } //***************************************************************************** // //! @brief Sets the selected RTC interrupts. //! //! @param ui32Interrupt - desired interrupts //! //! Sets the RTC interrupts causing them to immediately trigger. //! //! ui32Interrupt should be an OR of the following: //! //! AM_HAL_RTC_INT_ALM //! AM_HAL_RTC_INT_OF //! AM_HAL_RTC_INT_ACC //! AM_HAL_RTC_INT_ACF //! //! @return None. // //***************************************************************************** void am_hal_rtc_int_set(uint32_t ui32Interrupt) { // // Set the interrupts. // AM_REG(RTC, INTSET) = ui32Interrupt; } //***************************************************************************** // //! @brief Clear selected RTC interrupts. //! //! @param ui32Interrupt - desired interrupts //! //! Clears the RTC interrupts. //! //! ui32Interrupt should be an OR of the following: //! //! AM_HAL_RTC_INT_ALM //! AM_HAL_RTC_INT_OF //! AM_HAL_RTC_INT_ACC //! AM_HAL_RTC_INT_ACF //! //! @return None. // //***************************************************************************** void am_hal_rtc_int_clear(uint32_t ui32Interrupt) { // // Clear the interrupts. // AM_REG(RTC, INTCLR) = ui32Interrupt; } //***************************************************************************** // //! @brief Returns the RTC interrupt status. //! //! @param bEnabledOnly - return the status of only the enabled interrupts. //! //! Returns the RTC interrupt status. //! //! @return Bitwise representation of the current interrupt status. //! //! The return value will be the logical OR of one or more of the following //! values: //! //! AM_HAL_RTC_INT_ALM //! AM_HAL_RTC_INT_OF //! AM_HAL_RTC_INT_ACC //! AM_HAL_RTC_INT_ACF // //***************************************************************************** uint32_t am_hal_rtc_int_status_get(bool bEnabledOnly) { // // Get the interrupt status. // if (bEnabledOnly) { uint32_t u32RetVal; u32RetVal = AM_REG(RTC, INTSTAT); u32RetVal &= AM_REG(RTC, INTEN); return u32RetVal & (AM_HAL_RTC_INT_ALM | AM_HAL_RTC_INT_OF | AM_HAL_RTC_INT_ACC | AM_HAL_RTC_INT_ACF); } else { return (AM_REG(RTC, INTSTAT) & (AM_HAL_RTC_INT_ALM | AM_HAL_RTC_INT_OF | AM_HAL_RTC_INT_ACC | AM_HAL_RTC_INT_ACF)); } } //***************************************************************************** // //! @brief Set the Real Time Clock counter registers. //! //! @param *pTime - A pointer to the time structure. //! //! Sets the RTC counter registers to the supplied values. //! //! @return None. // //***************************************************************************** void am_hal_rtc_time_set(am_hal_rtc_time_t *pTime) { // // Enable writing to the counters. // AM_REG(RTC, RTCCTL) |= AM_REG_RTC_RTCCTL_WRTC(1); // // Write the RTCLOW register. // AM_REG(RTC, CTRLOW) = AM_REG_RTC_CTRLOW_CTRHR(dec_to_bcd(pTime->ui32Hour)) | AM_REG_RTC_CTRLOW_CTRMIN(dec_to_bcd(pTime->ui32Minute)) | AM_REG_RTC_CTRLOW_CTRSEC(dec_to_bcd(pTime->ui32Second)) | AM_REG_RTC_CTRLOW_CTR100(dec_to_bcd(pTime->ui32Hundredths)); // // Write the RTCUP register. // AM_REG(RTC, CTRUP) = AM_REG_RTC_CTRUP_CEB((pTime->ui32CenturyEnable)) | AM_REG_RTC_CTRUP_CB((pTime->ui32Century)) | AM_REG_RTC_CTRUP_CTRWKDY((pTime->ui32Weekday)) | AM_REG_RTC_CTRUP_CTRYR(dec_to_bcd((pTime->ui32Year))) | AM_REG_RTC_CTRUP_CTRMO(dec_to_bcd((pTime->ui32Month))) | AM_REG_RTC_CTRUP_CTRDATE(dec_to_bcd((pTime->ui32DayOfMonth))); // // Disable writing to the counters. // AM_REG(RTC, RTCCTL) &= ~AM_REG_RTC_RTCCTL_WRTC(1); } //***************************************************************************** // //! @brief Get the Real Time Clock current time. //! //! @param *pTime - A pointer to the time structure to store the current time. //! //! Gets the RTC's current time //! //! @return 0 for success and 1 for error. // //***************************************************************************** uint32_t am_hal_rtc_time_get(am_hal_rtc_time_t *pTime) { uint32_t ui32RTCLow, ui32RTCUp, ui32Value; // // Read the upper and lower RTC registers. // ui32RTCLow = AM_REG(RTC, CTRLOW); ui32RTCUp = AM_REG(RTC, CTRUP); // // Break out the lower word. // ui32Value = ((ui32RTCLow & AM_REG_RTC_CTRLOW_CTRHR_M) >> AM_REG_RTC_CTRLOW_CTRHR_S); pTime->ui32Hour = bcd_to_dec(ui32Value); ui32Value = ((ui32RTCLow & AM_REG_RTC_CTRLOW_CTRMIN_M) >> AM_REG_RTC_CTRLOW_CTRMIN_S); pTime->ui32Minute = bcd_to_dec(ui32Value); ui32Value = ((ui32RTCLow & AM_REG_RTC_CTRLOW_CTRSEC_M) >> AM_REG_RTC_CTRLOW_CTRSEC_S); pTime->ui32Second = bcd_to_dec(ui32Value); ui32Value = ((ui32RTCLow & AM_REG_RTC_CTRLOW_CTR100_M) >> AM_REG_RTC_CTRLOW_CTR100_S); pTime->ui32Hundredths = bcd_to_dec(ui32Value); // // Break out the upper word. // pTime->ui32ReadError = ((ui32RTCUp & AM_REG_RTC_CTRUP_CTERR_M) >> AM_REG_RTC_CTRUP_CTERR_S); pTime->ui32CenturyEnable = ((ui32RTCUp & AM_REG_RTC_CTRUP_CEB_M) >> AM_REG_RTC_CTRUP_CEB_S); pTime->ui32Century = ((ui32RTCUp & AM_REG_RTC_CTRUP_CB_M) >> AM_REG_RTC_CTRUP_CB_S); ui32Value = ((ui32RTCUp & AM_REG_RTC_CTRUP_CTRWKDY_M) >> AM_REG_RTC_CTRUP_CTRWKDY_S); pTime->ui32Weekday = bcd_to_dec(ui32Value); ui32Value = ((ui32RTCUp & AM_REG_RTC_CTRUP_CTRYR_M) >> AM_REG_RTC_CTRUP_CTRYR_S); pTime->ui32Year = bcd_to_dec(ui32Value); ui32Value = ((ui32RTCUp & AM_REG_RTC_CTRUP_CTRMO_M) >> AM_REG_RTC_CTRUP_CTRMO_S); pTime->ui32Month = bcd_to_dec(ui32Value); ui32Value = ((ui32RTCUp & AM_REG_RTC_CTRUP_CTRDATE_M) >> AM_REG_RTC_CTRUP_CTRDATE_S); pTime->ui32DayOfMonth = bcd_to_dec(ui32Value); // // Was there a read error? // if (pTime->ui32ReadError) { return 1; } else { return 0; } } //***************************************************************************** // //! @brief Sets the alarm repeat interval. //! //! @param ui32RepeatInterval the desired repeat interval. //! //! Sets the alarm repeat interval. //! //! Valid values for ui32RepeatInterval: //! //! AM_HAL_RTC_ALM_RPT_DIS //! AM_HAL_RTC_ALM_RPT_YR //! AM_HAL_RTC_ALM_RPT_MTH //! AM_HAL_RTC_ALM_RPT_WK //! AM_HAL_RTC_ALM_RPT_DAY //! AM_HAL_RTC_ALM_RPT_HR //! AM_HAL_RTC_ALM_RPT_MIN //! AM_HAL_RTC_ALM_RPT_SEC //! AM_HAL_RTC_ALM_RPT_10TH //! AM_HAL_RTC_ALM_RPT_100TH //! //! @return None. // //***************************************************************************** void am_hal_rtc_alarm_interval_set(uint32_t ui32RepeatInterval) { uint32_t ui32RptInt, ui32Alm100, ui32Value; switch(ui32RepeatInterval) { // // If repeat every 10th set RPT and ALM100 field accordinly // case AM_HAL_RTC_ALM_RPT_10TH: ui32RptInt = AM_HAL_RTC_ALM_RPT_SEC; ui32Alm100 = AM_HAL_RTC_ALM100_10TH; break; // // If repeat every 100th set RPT and ALM100 field accordinly // case AM_HAL_RTC_ALM_RPT_100TH: ui32RptInt = AM_HAL_RTC_ALM_RPT_SEC; ui32Alm100 = AM_HAL_RTC_ALM100_100TH; break; // // Otherwise set RPT as value passed. ALM100 values need to be 0xnn // in this setting where n = 0-9. // default: // // Get the current value of the ALM100 field. // ui32Value = AM_BFR(RTC, ALMLOW, ALM100); // // If ALM100 was previous EVERY_10TH or EVERY_100TH reset to zero // otherwise keep previous setting. // ui32Alm100 = ui32Value >= 0xF0 ? 0 : ui32Value; // // Set RPT value to value passed. // ui32RptInt = ui32RepeatInterval; break; } // // Write the interval to the register. // AM_BFW(RTC, RTCCTL, RPT, ui32RptInt); // // Write the Alarm 100 bits in the ALM100 register. // AM_BFW(RTC, ALMLOW, ALM100, ui32Alm100); } //***************************************************************************** // //! @brief Sets the RTC's Alarm. //! //! @param *pTime - A pointer to the time structure. //! @param ui32RepeatInterval - the desired alarm repeat interval. //! //! Set the Real Time Clock Alarm Parameters. //! //! Valid values for ui32RepeatInterval: //! //! AM_HAL_RTC_ALM_RPT_DIS //! AM_HAL_RTC_ALM_RPT_YR //! AM_HAL_RTC_ALM_RPT_MTH //! AM_HAL_RTC_ALM_RPT_WK //! AM_HAL_RTC_ALM_RPT_DAY //! AM_HAL_RTC_ALM_RPT_HR //! AM_HAL_RTC_ALM_RPT_MIN //! AM_HAL_RTC_ALM_RPT_SEC //! AM_HAL_RTC_ALM_RPT_10TH //! AM_HAL_RTC_ALM_RPT_EVERY_100TH //! //! @return None. // //***************************************************************************** void am_hal_rtc_alarm_set(am_hal_rtc_time_t *pTime, uint32_t ui32RepeatInterval) { uint8_t ui8Value = 0; // // Write the interval to the register. // AM_REG(RTC, RTCCTL) |= AM_REG_RTC_RTCCTL_RPT(ui32RepeatInterval > 0x7 ? 0x7 : ui32RepeatInterval); // // Check if the interval is 10th or every 100th and track it in ui8Value. // if (ui32RepeatInterval == AM_HAL_RTC_ALM_RPT_10TH) { ui8Value = 0xF0; } else if (ui32RepeatInterval == AM_HAL_RTC_ALM_RPT_100TH) { ui8Value = 0xFF; } // // Write the ALMUP register. // AM_REG(RTC, ALMUP) = AM_REG_RTC_ALMUP_ALMWKDY((pTime->ui32Weekday)) | AM_REG_RTC_ALMUP_ALMMO(dec_to_bcd((pTime->ui32Month))) | AM_REG_RTC_ALMUP_ALMDATE(dec_to_bcd((pTime->ui32DayOfMonth))); // // Write the ALMLOW register. // AM_REG(RTC, ALMLOW) = AM_REG_RTC_ALMLOW_ALMHR(dec_to_bcd(pTime->ui32Hour)) | AM_REG_RTC_ALMLOW_ALMMIN(dec_to_bcd(pTime->ui32Minute)) | AM_REG_RTC_ALMLOW_ALMSEC(dec_to_bcd(pTime->ui32Second)) | AM_REG_RTC_ALMLOW_ALM100(dec_to_bcd(pTime->ui32Hundredths) | ui8Value); } //***************************************************************************** // //! @brief Get the Real Time Clock Alarm Parameters //! //! @param *pTime - A pointer to the time structure to store the current alarm. //! //! Gets the RTC's Alarm time //! //! @return None. // //***************************************************************************** void am_hal_rtc_alarm_get(am_hal_rtc_time_t *pTime) { uint32_t ui32ALMLow, ui32ALMUp, ui32Value; // // Read the upper and lower RTC registers. // ui32ALMLow = AM_REG(RTC, ALMLOW); ui32ALMUp = AM_REG(RTC, ALMUP); // // Break out the lower word. // ui32Value = ((ui32ALMLow & AM_REG_RTC_ALMLOW_ALMHR_M) >> AM_REG_RTC_ALMLOW_ALMHR_S); pTime->ui32Hour = bcd_to_dec(ui32Value); ui32Value = ((ui32ALMLow & AM_REG_RTC_ALMLOW_ALMMIN_M) >> AM_REG_RTC_ALMLOW_ALMMIN_S); pTime->ui32Minute = bcd_to_dec(ui32Value); ui32Value = ((ui32ALMLow & AM_REG_RTC_ALMLOW_ALMSEC_M) >> AM_REG_RTC_ALMLOW_ALMSEC_S); pTime->ui32Second = bcd_to_dec(ui32Value); ui32Value = ((ui32ALMLow & AM_REG_RTC_ALMLOW_ALM100_M) >> AM_REG_RTC_ALMLOW_ALM100_S); pTime->ui32Hundredths = bcd_to_dec(ui32Value); // // Break out the upper word. // pTime->ui32ReadError = 0; pTime->ui32CenturyEnable = 0; pTime->ui32Century = 0; ui32Value = ((ui32ALMUp & AM_REG_RTC_ALMUP_ALMWKDY_M) >> AM_REG_RTC_ALMUP_ALMWKDY_S); pTime->ui32Weekday = bcd_to_dec(ui32Value); pTime->ui32Year = 0; ui32Value = ((ui32ALMUp & AM_REG_RTC_ALMUP_ALMMO_M) >> AM_REG_RTC_ALMUP_ALMMO_S); pTime->ui32Month = bcd_to_dec(ui32Value); ui32Value = ((ui32ALMUp & AM_REG_RTC_ALMUP_ALMDATE_M) >> AM_REG_RTC_ALMUP_ALMDATE_S); pTime->ui32DayOfMonth = bcd_to_dec(ui32Value); } //***************************************************************************** // // End Doxygen group. //! @} // //*****************************************************************************