//***************************************************************************** // // am_hal_wdt.c //! @file //! //! @brief Hardware abstraction layer for the Watchdog Timer module. //! //! @addtogroup wdt3 Watchdog Timer (WDT) //! @ingroup apollo3hal //! @{ // //***************************************************************************** //***************************************************************************** // // Copyright (c) 2020, Ambiq Micro // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its // contributors may be used to endorse or promote products derived from this // software without specific prior written permission. // // Third party software included in this distribution is subject to the // additional license terms as defined in the /docs/licenses directory. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // This is part of revision 2.4.2 of the AmbiqSuite Development Package. // //***************************************************************************** #include #include #include "am_mcu_apollo.h" //***************************************************************************** // // Adjacency check // // This is related to the timer read workaround. This macro checks to see if // the two supplied count values are within one "tick" of eachother. It should // still pass in the event of a timer rollover. The "B" read is assumed to // follow the "A" read. The macro returns "TRUE" when the adjacent timer reads // can be used. // //***************************************************************************** #define adjacent(A, B) (((A) == (B)) || (((A) + 1) == (B)) || ((B) == 0)) //***************************************************************************** // //! @brief Configure the watchdog timer. //! //! @param psConfig - pointer to a configuration structure containing the //! desired watchdog settings. //! //! This function will set the watchdog configuration register based on the //! user's desired settings listed in the structure referenced by psConfig. If //! the structure indicates that watchdog interrupts are desired, this function //! will also set the interrupt enable bit in the configuration register. //! //! @note In order to actually receive watchdog interrupt and/or watchdog reset //! events, the caller will also need to make sure that the watchdog interrupt //! vector is enabled in the ARM NVIC, and that watchdog resets are enabled in //! the reset generator module. Otherwise, the watchdog-generated interrupt and //! reset events will have no effect. //! //! @return None. // //***************************************************************************** void am_hal_wdt_init(const am_hal_wdt_config_t *psConfig) { uint32_t ui32ConfigVal; uint16_t ui16IntCount, ui16ResetCount; bool bResetEnabled = psConfig->ui32Config & AM_HAL_WDT_ENABLE_RESET; bool bInterruptEnabled = psConfig->ui32Config & AM_HAL_WDT_ENABLE_INTERRUPT; // // Read the desired settings from the psConfig structure. // ui16IntCount = psConfig->ui16InterruptCount; ui16ResetCount = psConfig->ui16ResetCount; // // Write the interrupt and reset count values to a temporary variable. // // Accept the passed Config value, but clear the Counts that we are about to set. ui32ConfigVal = psConfig->ui32Config & ~(WDT_CFG_INTVAL_Msk | WDT_CFG_RESVAL_Msk); ui32ConfigVal |= _VAL2FLD(WDT_CFG_INTVAL, ui16IntCount); ui32ConfigVal |= _VAL2FLD(WDT_CFG_RESVAL, ui16ResetCount); // // If interrupts should be enabled, set the appropriate bit in the // temporary variable. Also, enable the interrupt in INTEN register in the // watchdog module. // if ( bInterruptEnabled ) { // // Enable the watchdog interrupt if the configuration calls for them. // WDT->INTEN |= WDT_INTEN_WDTINT_Msk; } else { // // Disable the watchdog interrupt if the configuration doesn't call for // watchdog interrupts. // WDT->INTEN &= ~WDT_INTEN_WDTINT_Msk; } // // If resets should be enabled, set the appropriate bit in the temporary // variable. // if ( bResetEnabled ) { // // Also enable watchdog resets in the reset module. // RSTGEN->CFG |= RSTGEN_CFG_WDREN_Msk; } else { // // Disable watchdog resets in the reset module. // RSTGEN->CFG &= ~RSTGEN_CFG_WDREN_Msk; } // // Check for a user specified clock select. If none specified then // set 128Hz. // if ( !(psConfig->ui32Config & WDT_CFG_CLKSEL_Msk) ) { ui32ConfigVal |= _VAL2FLD(WDT_CFG_CLKSEL, WDT_CFG_CLKSEL_128HZ); } // // Write the saved value to the watchdog configuration register. // WDT->CFG = ui32ConfigVal; } // am_hal_wdt_init() //***************************************************************************** // //! @brief Starts the watchdog timer. //! //! Enables the watchdog timer tick using the 'enable' bit in the watchdog //! configuration register. This function does not perform any locking of the //! watchdog timer, so it can be disabled or reconfigured later. //! //! @return None. // //***************************************************************************** void am_hal_wdt_start(void) { // // Make sure the watchdog timer is in the "reset" state, and then set the // enable bit to start counting. // WDT->CFG |= WDT_CFG_WDTEN_Msk; WDT->RSTRT = WDT_RSTRT_RSTRT_KEYVALUE; } // am_hal_wdt_start() //***************************************************************************** // //! @brief Stops the watchdog timer. //! //! Disables the watchdog timer tick by clearing the 'enable' bit in the //! watchdog configuration register. //! //! @return None. // //***************************************************************************** void am_hal_wdt_halt(void) { // // Clear the watchdog enable bit. // WDT->CFG &= ~WDT_CFG_WDTEN_Msk; } // am_hal_wdt_halt() //***************************************************************************** // //! @brief Locks the watchdog configuration and starts the watchdog timer. //! //! This function sets the watchdog "lock" register, which prevents software //! from re-configuring the watchdog. This action will also set the enable bit //! for the watchdog timer, so it will start counting immediately. //! //! @return None. // //***************************************************************************** void am_hal_wdt_lock_and_start(void) { // // Write the 'key' value to the watchdog lock register. // WDT->LOCK = WDT_LOCK_LOCK_KEYVALUE; } // am_hal_wdt_lock_and_start() //***************************************************************************** // //! @brief Read the state of the wdt interrupt status. //! //! @param bEnabledOnly - return the status of only the enabled interrupts. //! //! This function extracts the interrupt status bits and returns the enabled or //! raw based on bEnabledOnly. //! //! @return WDT interrupt status. // //***************************************************************************** uint32_t am_hal_wdt_int_status_get(bool bEnabledOnly) { if ( bEnabledOnly ) { uint32_t ui32RetVal; AM_CRITICAL_BEGIN ui32RetVal = WDT->INTSTAT; ui32RetVal &= WDT->INTEN; AM_CRITICAL_END return ui32RetVal; } else { return WDT->INTSTAT; } } // am_hal_wdt_int_status_get() //***************************************************************************** // //! @brief Set the state of the wdt interrupt status bit. //! //! This function sets the interrupt bit. //! //! @return None // //***************************************************************************** void am_hal_wdt_int_set(void) { WDT->INTSET = WDT_INTSET_WDTINT_Msk; } // am_hal_wdt_int_set() //***************************************************************************** // //! @brief Clear the state of the wdt interrupt status bit. //! //! This function clear the interrupt bit. //! //! @return None // //***************************************************************************** void am_hal_wdt_int_clear(void) { WDT->INTCLR = WDT_INTCLR_WDTINT_Msk; } // am_hal_wdt_int_clear() //***************************************************************************** // //! @brief Enable the wdt interrupt. //! //! This function enable the interrupt. //! //! @return None // //***************************************************************************** void am_hal_wdt_int_enable(void) { WDT->INTEN |= WDT_INTEN_WDTINT_Msk; } // am_hal_wdt_int_enable() //***************************************************************************** // //! @brief Return the enabled WDT interrupts. //! //! This function returns the enabled WDT interrupts. //! //! @return enabled WDT interrupts. // //***************************************************************************** uint32_t am_hal_wdt_int_enable_get(void) { return WDT->INTEN; } // am_hal_wdt_int_enable_get() //***************************************************************************** // //! @brief Disable the wdt interrupt. //! //! This function disablee the interrupt. //! //! @return None // //***************************************************************************** void am_hal_wdt_int_disable(void) { WDT->INTEN &= ~WDT_INTEN_WDTINT_Msk; } // am_hal_wdt_int_disable() //***************************************************************************** // //! @brief Get the wdt counter value. //! //! This function reads the current value of watch dog timer counter register. //! //! @return None // //***************************************************************************** uint32_t am_hal_wdt_counter_get(void) { uint32_t ui32Values[3] = {0}; uint32_t ui32Value; // // Start a critical section. // uint32_t ui32InterruptState = am_hal_interrupt_master_disable(); // // First, go read the value from the counter register 3 times // back to back in assembly language. // am_hal_triple_read( AM_REGADDR(WDT, COUNT), ui32Values ); // // Mask out the COUNT field from the 3 read values. // ui32Values[0] = _VAL2FLD(WDT_COUNT_COUNT, ui32Values[0]); ui32Values[1] = _VAL2FLD(WDT_COUNT_COUNT, ui32Values[1]); ui32Values[2] = _VAL2FLD(WDT_COUNT_COUNT, ui32Values[2]); // // Now, we'll figure out which of the three values is the correct time. // if (ui32Values[0] == ui32Values[1]) { // // If the first two values match, then neither one was a bad read. // We'll take this as the current time. // ui32Value = ui32Values[1]; } else { // // If the first two values didn't match, then one of them might be bad. // If one of the first two values is bad, then the third one should // always be correct. We'll take the third value as the correct count. // ui32Value = ui32Values[2]; // // If all of the statements about the architecture are true, the third // value should be correct, and it should always be within one count of // either the first or the second value. // // Just in case, we'll check against the previous two values to make // sure that our final answer was reasonable. If it isn't, we will // flag it as a "bad read", and fail this assert statement. // // This shouldn't ever happen, and it hasn't ever happened in any of // our tests so far. // am_hal_debug_assert_msg((adjacent(ui32Values[1], ui32Values[2]) || adjacent(ui32Values[0], ui32Values[2])), "Bad CDT read"); } // // End the critical section. // am_hal_interrupt_master_set(ui32InterruptState); return ui32Value; } // am_hal_wdt_counter_get() //***************************************************************************** // // End Doxygen group. //! @} // //*****************************************************************************