/* Copyright 2014, Kenneth MacKay. Licensed under the BSD 2-clause license. */ #include #include "uECC_ll.h" #ifndef uECC_PLATFORM #if defined(__AVR__) && __AVR__ #define uECC_PLATFORM uECC_avr #elif defined(__thumb2__) || defined(_M_ARMT) /* I think MSVC only supports Thumb-2 targets */ #define uECC_PLATFORM uECC_arm_thumb2 #elif defined(__thumb__) #define uECC_PLATFORM uECC_arm_thumb #elif defined(__arm__) || defined(_M_ARM) #define uECC_PLATFORM uECC_arm #elif defined(__i386__) || defined(_M_IX86) || defined(_X86_) || defined(__I86__) #define uECC_PLATFORM uECC_x86 #elif defined(__amd64__) || defined(_M_X64) #define uECC_PLATFORM uECC_x86_64 #else #define uECC_PLATFORM uECC_arch_other #endif #endif #define uECC_WORD_SIZE 4 #if __STDC_VERSION__ >= 199901L #define RESTRICT restrict #else #define RESTRICT #endif #define SUPPORTS_INT128 0 #define MAX_TRIES 64 /* #if uECC_WORD_SIZE == 4 */ typedef uint32_t uECC_word_t; typedef uint64_t uECC_dword_t; typedef unsigned wordcount_t; typedef int swordcount_t; typedef int bitcount_t; typedef int cmpresult_t; #define HIGH_BIT_SET 0x80000000 #define uECC_WORD_BITS 32 #define uECC_WORD_BITS_SHIFT 5 #define uECC_WORD_BITS_MASK 0x01F #define uECC_WORDS_1 5 #define uECC_WORDS_2 6 #define uECC_WORDS_3 8 #define uECC_WORDS_4 8 #define uECC_WORDS_5 7 #define uECC_N_WORDS_1 6 #define uECC_N_WORDS_2 6 #define uECC_N_WORDS_3 8 #define uECC_N_WORDS_4 8 #define uECC_N_WORDS_5 7 #define Curve_P_1 {0x7FFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF} #define Curve_P_2 {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF} #define Curve_P_3 {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, \ 0x00000000, 0x00000000, 0x00000001, 0xFFFFFFFF} #define Curve_P_4 {0xFFFFFC2F, 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, \ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF} #define Curve_P_5 {0x00000001, 0x00000000, 0x00000000, 0xFFFFFFFF, \ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF} #define Curve_B_1 {0xC565FA45, 0x81D4D4AD, 0x65ACF89F, 0x54BD7A8B, 0x1C97BEFC} #define Curve_B_2 {0xC146B9B1, 0xFEB8DEEC, 0x72243049, 0x0FA7E9AB, 0xE59C80E7, 0x64210519} #define Curve_B_3 {0x27D2604B, 0x3BCE3C3E, 0xCC53B0F6, 0x651D06B0, \ 0x769886BC, 0xB3EBBD55, 0xAA3A93E7, 0x5AC635D8} #define Curve_B_4 {0x00000007, 0x00000000, 0x00000000, 0x00000000, \ 0x00000000, 0x00000000, 0x00000000, 0x00000000} #define Curve_B_5 {0x2355FFB4, 0x270B3943, 0xD7BFD8BA, 0x5044B0B7, \ 0xF5413256, 0x0C04B3AB, 0xB4050A85} #define Curve_G_1 { \ {0x13CBFC82, 0x68C38BB9, 0x46646989, 0x8EF57328, 0x4A96B568}, \ {0x7AC5FB32, 0x04235137, 0x59DCC912, 0x3168947D, 0x23A62855}} #define Curve_G_2 { \ {0x82FF1012, 0xF4FF0AFD, 0x43A18800, 0x7CBF20EB, 0xB03090F6, 0x188DA80E}, \ {0x1E794811, 0x73F977A1, 0x6B24CDD5, 0x631011ED, 0xFFC8DA78, 0x07192B95}} #define Curve_G_3 { \ {0xD898C296, 0xF4A13945, 0x2DEB33A0, 0x77037D81, \ 0x63A440F2, 0xF8BCE6E5, 0xE12C4247, 0x6B17D1F2}, \ {0x37BF51F5, 0xCBB64068, 0x6B315ECE, 0x2BCE3357, \ 0x7C0F9E16, 0x8EE7EB4A, 0xFE1A7F9B, 0x4FE342E2}} #define Curve_G_4 { \ {0x16F81798, 0x59F2815B, 0x2DCE28D9, 0x029BFCDB, \ 0xCE870B07, 0x55A06295, 0xF9DCBBAC, 0x79BE667E}, \ {0xFB10D4B8, 0x9C47D08F, 0xA6855419, 0xFD17B448, \ 0x0E1108A8, 0x5DA4FBFC, 0x26A3C465, 0x483ADA77}} #define Curve_G_5 { \ {0x115C1D21, 0x343280D6, 0x56C21122, 0x4A03C1D3, \ 0x321390B9, 0x6BB4BF7F, 0xB70E0CBD}, \ {0x85007E34, 0x44D58199, 0x5A074764, 0xCD4375A0, \ 0x4C22DFE6, 0xB5F723FB, 0xBD376388}} #define Curve_N_1 {0xCA752257, 0xF927AED3, 0x0001F4C8, 0x00000000, 0x00000000, 0x00000001} #define Curve_N_2 {0xB4D22831, 0x146BC9B1, 0x99DEF836, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF} #define Curve_N_3 {0xFC632551, 0xF3B9CAC2, 0xA7179E84, 0xBCE6FAAD, \ 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0xFFFFFFFF} #define Curve_N_4 {0xD0364141, 0xBFD25E8C, 0xAF48A03B, 0xBAAEDCE6, \ 0xFFFFFFFE, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF} #define Curve_N_5 {0x5C5C2A3D, 0x13DD2945, 0xE0B8F03E, 0xFFFF16A2, \ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF} /* #endif */ #define uECC_WORDS uECC_CONCAT(uECC_WORDS_, uECC_CURVE) #define uECC_N_WORDS uECC_CONCAT(uECC_N_WORDS_, uECC_CURVE) typedef struct EccPoint { uECC_word_t x[uECC_WORDS]; uECC_word_t y[uECC_WORDS]; } EccPoint; static const uECC_word_t curve_p[uECC_WORDS] = uECC_CONCAT(Curve_P_, uECC_CURVE); static const uECC_word_t curve_b[uECC_WORDS] = uECC_CONCAT(Curve_B_, uECC_CURVE); static const EccPoint curve_G = uECC_CONCAT(Curve_G_, uECC_CURVE); static const uECC_word_t curve_n[uECC_N_WORDS] = uECC_CONCAT(Curve_N_, uECC_CURVE); static void vli_clear(uECC_word_t *vli); static uECC_word_t vli_isZero(const uECC_word_t *vli); static uECC_word_t vli_testBit(const uECC_word_t *vli, bitcount_t bit); static void vli_set(uECC_word_t *dest, const uECC_word_t *src); static cmpresult_t vli_cmp(const uECC_word_t *left, const uECC_word_t *right); static void vli_rshift1(uECC_word_t *vli); static uECC_word_t vli_add(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right); static uECC_word_t vli_sub(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right); static void vli_mult(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right); static void vli_modAdd(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right, const uECC_word_t *mod); static void vli_modSub(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right, const uECC_word_t *mod); static void vli_mmod_fast(uECC_word_t *RESTRICT result, uECC_word_t *RESTRICT product); static void vli_modMult_fast(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right); static void vli_modInv(uECC_word_t *result, const uECC_word_t *input, const uECC_word_t *mod); #if uECC_SQUARE_FUNC static void vli_square(uECC_word_t *result, const uECC_word_t *left); static void vli_modSquare_fast(uECC_word_t *result, const uECC_word_t *left); #endif static int default_RNG(uint8_t *dest, unsigned size) { return 0; } static uECC_RNG_Function g_rng_function = &default_RNG; void uECC_set_rng_ll(uECC_RNG_Function rng_function) { g_rng_function = rng_function; } #ifdef __GNUC__ /* Only support GCC inline asm for now */ #if (uECC_ASM && (uECC_PLATFORM == uECC_arm || uECC_PLATFORM == uECC_arm_thumb || \ uECC_PLATFORM == uECC_arm_thumb2)) #include "asm_arm.inc" #endif #endif #if !defined(asm_clear) || !asm_clear static void vli_clear(uECC_word_t *vli) { wordcount_t i; for (i = 0; i < uECC_WORDS; ++i) { vli[i] = 0; } } #endif /* Returns 1 if vli == 0, 0 otherwise. */ #if !defined(asm_isZero) || !asm_isZero static uECC_word_t vli_isZero(const uECC_word_t *vli) { wordcount_t i; for (i = 0; i < uECC_WORDS; ++i) { if (vli[i]) { return 0; } } return 1; } #endif /* Returns nonzero if bit 'bit' of vli is set. */ #if !defined(asm_testBit) || !asm_testBit static uECC_word_t vli_testBit(const uECC_word_t *vli, bitcount_t bit) { return (vli[bit >> uECC_WORD_BITS_SHIFT] & ((uECC_word_t)1 << (bit & uECC_WORD_BITS_MASK))); } #endif /* Sets dest = src. */ #if !defined(asm_set) || !asm_set static void vli_set(uECC_word_t *dest, const uECC_word_t *src) { wordcount_t i; for (i = 0; i < uECC_WORDS; ++i) { dest[i] = src[i]; } } #endif /* Returns sign of left - right. */ #if !defined(asm_cmp) || !asm_cmp static cmpresult_t vli_cmp(const uECC_word_t *left, const uECC_word_t *right) { swordcount_t i; for (i = uECC_WORDS - 1; i >= 0; --i) { if (left[i] > right[i]) { return 1; } else if (left[i] < right[i]) { return -1; } } return 0; } #endif /* Computes vli = vli >> 1. */ #if !defined(asm_rshift1) || !asm_rshift1 static void vli_rshift1(uECC_word_t *vli) { uECC_word_t *end = vli; uECC_word_t carry = 0; vli += uECC_WORDS; while (vli-- > end) { uECC_word_t temp = *vli; *vli = (temp >> 1) | carry; carry = temp << (uECC_WORD_BITS - 1); } } #endif /* Computes result = left + right, returning carry. Can modify in place. */ #if !defined(asm_add) || !asm_add static uECC_word_t vli_add(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right) { uECC_word_t carry = 0; wordcount_t i; for (i = 0; i < uECC_WORDS; ++i) { uECC_word_t sum = left[i] + right[i] + carry; if (sum != left[i]) { carry = (sum < left[i]); } result[i] = sum; } return carry; } #endif /* Computes result = left - right, returning borrow. Can modify in place. */ #if !defined(asm_sub) || !asm_sub static uECC_word_t vli_sub(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right) { uECC_word_t borrow = 0; wordcount_t i; for (i = 0; i < uECC_WORDS; ++i) { uECC_word_t diff = left[i] - right[i] - borrow; if (diff != left[i]) { borrow = (diff > left[i]); } result[i] = diff; } return borrow; } #endif #if (!asm_mult || (uECC_SQUARE_FUNC && !asm_square) || uECC_CURVE == uECC_secp256k1) static void muladd(uECC_word_t a, uECC_word_t b, uECC_word_t *r0, uECC_word_t *r1, uECC_word_t *r2) { uECC_dword_t p = (uECC_dword_t)a * b; uECC_dword_t r01 = ((uECC_dword_t)(*r1) << uECC_WORD_BITS) | *r0; r01 += p; *r2 += (r01 < p); *r1 = r01 >> uECC_WORD_BITS; *r0 = (uECC_word_t)r01; } #define muladd_exists 1 #endif #if !asm_mult static void vli_mult(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right) { uECC_word_t r0 = 0; uECC_word_t r1 = 0; uECC_word_t r2 = 0; wordcount_t i, k; /* Compute each digit of result in sequence, maintaining the carries. */ for (k = 0; k < uECC_WORDS; ++k) { for (i = 0; i <= k; ++i) { muladd(left[i], right[k - i], &r0, &r1, &r2); } result[k] = r0; r0 = r1; r1 = r2; r2 = 0; } for (k = uECC_WORDS; k < uECC_WORDS * 2 - 1; ++k) { for (i = (k + 1) - uECC_WORDS; i < uECC_WORDS; ++i) { muladd(left[i], right[k - i], &r0, &r1, &r2); } result[k] = r0; r0 = r1; r1 = r2; r2 = 0; } result[uECC_WORDS * 2 - 1] = r0; } #endif #if uECC_SQUARE_FUNC #if !asm_square static void mul2add(uECC_word_t a, uECC_word_t b, uECC_word_t *r0, uECC_word_t *r1, uECC_word_t *r2) { uECC_dword_t p = (uECC_dword_t)a * b; uECC_dword_t r01 = ((uECC_dword_t)(*r1) << uECC_WORD_BITS) | *r0; *r2 += (p >> (uECC_WORD_BITS * 2 - 1)); p *= 2; r01 += p; *r2 += (r01 < p); *r1 = r01 >> uECC_WORD_BITS; *r0 = (uECC_word_t)r01; } static void vli_square(uECC_word_t *result, const uECC_word_t *left) { uECC_word_t r0 = 0; uECC_word_t r1 = 0; uECC_word_t r2 = 0; wordcount_t i, k; for (k = 0; k < uECC_WORDS * 2 - 1; ++k) { uECC_word_t min = (k < uECC_WORDS ? 0 : (k + 1) - uECC_WORDS); for (i = min; i <= k && i <= k - i; ++i) { if (i < k-i) { mul2add(left[i], left[k - i], &r0, &r1, &r2); } else { muladd(left[i], left[k - i], &r0, &r1, &r2); } } result[k] = r0; r0 = r1; r1 = r2; r2 = 0; } result[uECC_WORDS * 2 - 1] = r0; } #endif #else /* uECC_SQUARE_FUNC */ #define vli_square(result, left, size) vli_mult((result), (left), (left), (size)) #endif /* uECC_SQUARE_FUNC */ /* Computes result = (left + right) % mod. Assumes that left < mod and right < mod, and that result does not overlap mod. */ #if !defined(asm_modAdd) || !asm_modAdd static void vli_modAdd(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right, const uECC_word_t *mod) { uECC_word_t carry = vli_add(result, left, right); if (carry || vli_cmp(result, mod) >= 0) { /* result > mod (result = mod + remainder), so subtract mod to get remainder. */ vli_sub(result, result, mod); } } #endif /* Computes result = (left - right) % mod. Assumes that left < mod and right < mod, and that result does not overlap mod. */ #if !defined(asm_modSub) || !asm_modSub static void vli_modSub(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right, const uECC_word_t *mod) { uECC_word_t l_borrow = vli_sub(result, left, right); if (l_borrow) { /* In this case, result == -diff == (max int) - diff. Since -x % d == d - x, we can get the correct result from result + mod (with overflow). */ vli_add(result, result, mod); } } #endif #if !defined(asm_modSub_fast) || !asm_modSub_fast #define vli_modSub_fast(result, left, right) vli_modSub((result), (left), (right), curve_p) #endif #if !defined(asm_mmod_fast) || !asm_mmod_fast #if uECC_CURVE == uECC_secp256r1 /* Computes result = product % curve_p from http://www.nsa.gov/ia/_files/nist-routines.pdf */ #if uECC_WORD_SIZE == 4 static void vli_mmod_fast(uint32_t *RESTRICT result, uint32_t *RESTRICT product) { uint32_t tmp[uECC_WORDS]; int carry; /* t */ vli_set(result, product); /* s1 */ tmp[0] = tmp[1] = tmp[2] = 0; tmp[3] = product[11]; tmp[4] = product[12]; tmp[5] = product[13]; tmp[6] = product[14]; tmp[7] = product[15]; carry = vli_add(tmp, tmp, tmp); carry += vli_add(result, result, tmp); /* s2 */ tmp[3] = product[12]; tmp[4] = product[13]; tmp[5] = product[14]; tmp[6] = product[15]; tmp[7] = 0; carry += vli_add(tmp, tmp, tmp); carry += vli_add(result, result, tmp); /* s3 */ tmp[0] = product[8]; tmp[1] = product[9]; tmp[2] = product[10]; tmp[3] = tmp[4] = tmp[5] = 0; tmp[6] = product[14]; tmp[7] = product[15]; carry += vli_add(result, result, tmp); /* s4 */ tmp[0] = product[9]; tmp[1] = product[10]; tmp[2] = product[11]; tmp[3] = product[13]; tmp[4] = product[14]; tmp[5] = product[15]; tmp[6] = product[13]; tmp[7] = product[8]; carry += vli_add(result, result, tmp); /* d1 */ tmp[0] = product[11]; tmp[1] = product[12]; tmp[2] = product[13]; tmp[3] = tmp[4] = tmp[5] = 0; tmp[6] = product[8]; tmp[7] = product[10]; carry -= vli_sub(result, result, tmp); /* d2 */ tmp[0] = product[12]; tmp[1] = product[13]; tmp[2] = product[14]; tmp[3] = product[15]; tmp[4] = tmp[5] = 0; tmp[6] = product[9]; tmp[7] = product[11]; carry -= vli_sub(result, result, tmp); /* d3 */ tmp[0] = product[13]; tmp[1] = product[14]; tmp[2] = product[15]; tmp[3] = product[8]; tmp[4] = product[9]; tmp[5] = product[10]; tmp[6] = 0; tmp[7] = product[12]; carry -= vli_sub(result, result, tmp); /* d4 */ tmp[0] = product[14]; tmp[1] = product[15]; tmp[2] = 0; tmp[3] = product[9]; tmp[4] = product[10]; tmp[5] = product[11]; tmp[6] = 0; tmp[7] = product[13]; carry -= vli_sub(result, result, tmp); if (carry < 0) { do { carry += vli_add(result, result, curve_p); } while (carry < 0); } else { while (carry || vli_cmp(curve_p, result) != 1) { carry -= vli_sub(result, result, curve_p); } } } #endif /* uECC_WORD_SIZE */ #endif /* uECC_CURVE */ #endif /* !asm_mmod_fast */ /* Computes result = (left * right) % curve_p. */ static void vli_modMult_fast(uECC_word_t *result, const uECC_word_t *left, const uECC_word_t *right) { uECC_word_t product[2 * uECC_WORDS]; vli_mult(product, left, right); vli_mmod_fast(result, product); } #if uECC_SQUARE_FUNC /* Computes result = left^2 % curve_p. */ static void vli_modSquare_fast(uECC_word_t *result, const uECC_word_t *left) { uECC_word_t product[2 * uECC_WORDS]; vli_square(product, left); vli_mmod_fast(result, product); } #else /* uECC_SQUARE_FUNC */ #define vli_modSquare_fast(result, left) vli_modMult_fast((result), (left), (left)) #endif /* uECC_SQUARE_FUNC */ #define EVEN(vli) (!(vli[0] & 1)) /* Computes result = (1 / input) % mod. All VLIs are the same size. See "From Euclid's GCD to Montgomery Multiplication to the Great Divide" https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf */ #if !defined(asm_modInv) || !asm_modInv static void vli_modInv(uECC_word_t *result, const uECC_word_t *input, const uECC_word_t *mod) { uECC_word_t a[uECC_WORDS], b[uECC_WORDS], u[uECC_WORDS], v[uECC_WORDS]; uECC_word_t carry; cmpresult_t cmpResult; if (vli_isZero(input)) { vli_clear(result); return; } vli_set(a, input); vli_set(b, mod); vli_clear(u); u[0] = 1; vli_clear(v); while ((cmpResult = vli_cmp(a, b)) != 0) { carry = 0; if (EVEN(a)) { vli_rshift1(a); if (!EVEN(u)) { carry = vli_add(u, u, mod); } vli_rshift1(u); if (carry) { u[uECC_WORDS - 1] |= HIGH_BIT_SET; } } else if (EVEN(b)) { vli_rshift1(b); if (!EVEN(v)) { carry = vli_add(v, v, mod); } vli_rshift1(v); if (carry) { v[uECC_WORDS - 1] |= HIGH_BIT_SET; } } else if (cmpResult > 0) { vli_sub(a, a, b); vli_rshift1(a); if (vli_cmp(u, v) < 0) { vli_add(u, u, mod); } vli_sub(u, u, v); if (!EVEN(u)) { carry = vli_add(u, u, mod); } vli_rshift1(u); if (carry) { u[uECC_WORDS - 1] |= HIGH_BIT_SET; } } else { vli_sub(b, b, a); vli_rshift1(b); if (vli_cmp(v, u) < 0) { vli_add(v, v, mod); } vli_sub(v, v, u); if (!EVEN(v)) { carry = vli_add(v, v, mod); } vli_rshift1(v); if (carry) { v[uECC_WORDS - 1] |= HIGH_BIT_SET; } } } vli_set(result, u); } #endif /* !asm_modInv */ /* ------ Point operations ------ */ /* Returns 1 if 'point' is the point at infinity, 0 otherwise. */ static cmpresult_t EccPoint_isZero(const EccPoint *point) { return (vli_isZero(point->x) && vli_isZero(point->y)); } /* Point multiplication algorithm using Montgomery's ladder with co-Z coordinates. From http://eprint.iacr.org/2011/338.pdf */ /* Double in place */ static void EccPoint_double_jacobian(uECC_word_t * RESTRICT X1, uECC_word_t * RESTRICT Y1, uECC_word_t * RESTRICT Z1) { /* t1 = X, t2 = Y, t3 = Z */ uECC_word_t t4[uECC_WORDS]; uECC_word_t t5[uECC_WORDS]; if (vli_isZero(Z1)) { return; } vli_modSquare_fast(t4, Y1); /* t4 = y1^2 */ vli_modMult_fast(t5, X1, t4); /* t5 = x1*y1^2 = A */ vli_modSquare_fast(t4, t4); /* t4 = y1^4 */ vli_modMult_fast(Y1, Y1, Z1); /* t2 = y1*z1 = z3 */ vli_modSquare_fast(Z1, Z1); /* t3 = z1^2 */ vli_modAdd(X1, X1, Z1, curve_p); /* t1 = x1 + z1^2 */ vli_modAdd(Z1, Z1, Z1, curve_p); /* t3 = 2*z1^2 */ vli_modSub_fast(Z1, X1, Z1); /* t3 = x1 - z1^2 */ vli_modMult_fast(X1, X1, Z1); /* t1 = x1^2 - z1^4 */ vli_modAdd(Z1, X1, X1, curve_p); /* t3 = 2*(x1^2 - z1^4) */ vli_modAdd(X1, X1, Z1, curve_p); /* t1 = 3*(x1^2 - z1^4) */ if (vli_testBit(X1, 0)) { uECC_word_t l_carry = vli_add(X1, X1, curve_p); vli_rshift1(X1); X1[uECC_WORDS - 1] |= l_carry << (uECC_WORD_BITS - 1); } else { vli_rshift1(X1); } /* t1 = 3/2*(x1^2 - z1^4) = B */ vli_modSquare_fast(Z1, X1); /* t3 = B^2 */ vli_modSub_fast(Z1, Z1, t5); /* t3 = B^2 - A */ vli_modSub_fast(Z1, Z1, t5); /* t3 = B^2 - 2A = x3 */ vli_modSub_fast(t5, t5, Z1); /* t5 = A - x3 */ vli_modMult_fast(X1, X1, t5); /* t1 = B * (A - x3) */ vli_modSub_fast(t4, X1, t4); /* t4 = B * (A - x3) - y1^4 = y3 */ vli_set(X1, Z1); vli_set(Z1, Y1); vli_set(Y1, t4); } /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */ static void apply_z(uECC_word_t * RESTRICT X1, uECC_word_t * RESTRICT Y1, const uECC_word_t * RESTRICT Z) { uECC_word_t t1[uECC_WORDS]; vli_modSquare_fast(t1, Z); /* z^2 */ vli_modMult_fast(X1, X1, t1); /* x1 * z^2 */ vli_modMult_fast(t1, t1, Z); /* z^3 */ vli_modMult_fast(Y1, Y1, t1); /* y1 * z^3 */ } /* P = (x1, y1) => 2P, (x2, y2) => P' */ static void XYcZ_initial_double(uECC_word_t * RESTRICT X1, uECC_word_t * RESTRICT Y1, uECC_word_t * RESTRICT X2, uECC_word_t * RESTRICT Y2, const uECC_word_t * RESTRICT initial_Z) { uECC_word_t z[uECC_WORDS]; if (initial_Z) { vli_set(z, initial_Z); } else { vli_clear(z); z[0] = 1; } vli_set(X2, X1); vli_set(Y2, Y1); apply_z(X1, Y1, z); EccPoint_double_jacobian(X1, Y1, z); apply_z(X2, Y2, z); } /* Input P = (x1, y1, Z), Q = (x2, y2, Z) Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) or P => P', Q => P + Q */ static void XYcZ_add(uECC_word_t * RESTRICT X1, uECC_word_t * RESTRICT Y1, uECC_word_t * RESTRICT X2, uECC_word_t * RESTRICT Y2) { /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ uECC_word_t t5[uECC_WORDS]; vli_modSub_fast(t5, X2, X1); /* t5 = x2 - x1 */ vli_modSquare_fast(t5, t5); /* t5 = (x2 - x1)^2 = A */ vli_modMult_fast(X1, X1, t5); /* t1 = x1*A = B */ vli_modMult_fast(X2, X2, t5); /* t3 = x2*A = C */ vli_modSub_fast(Y2, Y2, Y1); /* t4 = y2 - y1 */ vli_modSquare_fast(t5, Y2); /* t5 = (y2 - y1)^2 = D */ vli_modSub_fast(t5, t5, X1); /* t5 = D - B */ vli_modSub_fast(t5, t5, X2); /* t5 = D - B - C = x3 */ vli_modSub_fast(X2, X2, X1); /* t3 = C - B */ vli_modMult_fast(Y1, Y1, X2); /* t2 = y1*(C - B) */ vli_modSub_fast(X2, X1, t5); /* t3 = B - x3 */ vli_modMult_fast(Y2, Y2, X2); /* t4 = (y2 - y1)*(B - x3) */ vli_modSub_fast(Y2, Y2, Y1); /* t4 = y3 */ vli_set(X2, t5); } /* Input P = (x1, y1, Z), Q = (x2, y2, Z) Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3) or P => P - Q, Q => P + Q */ static void XYcZ_addC(uECC_word_t * RESTRICT X1, uECC_word_t * RESTRICT Y1, uECC_word_t * RESTRICT X2, uECC_word_t * RESTRICT Y2) { /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ uECC_word_t t5[uECC_WORDS]; uECC_word_t t6[uECC_WORDS]; uECC_word_t t7[uECC_WORDS]; vli_modSub_fast(t5, X2, X1); /* t5 = x2 - x1 */ vli_modSquare_fast(t5, t5); /* t5 = (x2 - x1)^2 = A */ vli_modMult_fast(X1, X1, t5); /* t1 = x1*A = B */ vli_modMult_fast(X2, X2, t5); /* t3 = x2*A = C */ vli_modAdd(t5, Y2, Y1, curve_p); /* t5 = y2 + y1 */ vli_modSub_fast(Y2, Y2, Y1); /* t4 = y2 - y1 */ vli_modSub_fast(t6, X2, X1); /* t6 = C - B */ vli_modMult_fast(Y1, Y1, t6); /* t2 = y1 * (C - B) = E */ vli_modAdd(t6, X1, X2, curve_p); /* t6 = B + C */ vli_modSquare_fast(X2, Y2); /* t3 = (y2 - y1)^2 = D */ vli_modSub_fast(X2, X2, t6); /* t3 = D - (B + C) = x3 */ vli_modSub_fast(t7, X1, X2); /* t7 = B - x3 */ vli_modMult_fast(Y2, Y2, t7); /* t4 = (y2 - y1)*(B - x3) */ vli_modSub_fast(Y2, Y2, Y1); /* t4 = (y2 - y1)*(B - x3) - E = y3 */ vli_modSquare_fast(t7, t5); /* t7 = (y2 + y1)^2 = F */ vli_modSub_fast(t7, t7, t6); /* t7 = F - (B + C) = x3' */ vli_modSub_fast(t6, t7, X1); /* t6 = x3' - B */ vli_modMult_fast(t6, t6, t5); /* t6 = (y2 + y1)*(x3' - B) */ vli_modSub_fast(Y1, t6, Y1); /* t2 = (y2 + y1)*(x3' - B) - E = y3' */ vli_set(X1, t7); } /* Computes result = x^3 + ax + b. result must not overlap x. */ static void curve_x_side(uECC_word_t * RESTRICT result, const uECC_word_t * RESTRICT x) { #if (uECC_CURVE == uECC_secp256k1) vli_modSquare_fast(result, x); /* r = x^2 */ vli_modMult_fast(result, result, x); /* r = x^3 */ vli_modAdd(result, result, curve_b, curve_p); /* r = x^3 + b */ #else uECC_word_t _3[uECC_WORDS] = {3}; /* -a = 3 */ vli_modSquare_fast(result, x); /* r = x^2 */ vli_modSub_fast(result, result, _3); /* r = x^2 - 3 */ vli_modMult_fast(result, result, x); /* r = x^3 - 3x */ vli_modAdd(result, result, curve_b, curve_p); /* r = x^3 - 3x + b */ #endif } enum { ECC_POINT_MULT_STATE_INIT, ECC_POINT_MULT_STATE_BIT_ADDC, ECC_POINT_MULT_STATE_BIT_ADD, ECC_POINT_MULT_STATE_EXIT_ADDC, ECC_POINT_MULT_STATE_EXIT_ADD, ECC_POINT_MULT_STATE_COMPLETE }; typedef struct { uint8_t state; uECC_word_t Rx[2][uECC_WORDS]; uECC_word_t Ry[2][uECC_WORDS]; bitcount_t i; } EccPointMultCtx; static int EccPoint_mult(EccPointMultCtx *pCtx, EccPoint * RESTRICT result, const EccPoint * RESTRICT point, const uECC_word_t * RESTRICT scalar, const uECC_word_t * RESTRICT initialZ, bitcount_t numBits) { uECC_word_t nb; uECC_word_t z[uECC_WORDS]; switch (pCtx->state) { case ECC_POINT_MULT_STATE_INIT: vli_set(pCtx->Rx[1], point->x); vli_set(pCtx->Ry[1], point->y); XYcZ_initial_double(pCtx->Rx[1], pCtx->Ry[1], pCtx->Rx[0], pCtx->Ry[0], initialZ); pCtx->i = numBits - 2; pCtx->state = ECC_POINT_MULT_STATE_BIT_ADDC; return 0; case ECC_POINT_MULT_STATE_BIT_ADDC: nb = !vli_testBit(scalar, pCtx->i); XYcZ_addC(pCtx->Rx[1 - nb], pCtx->Ry[1 - nb], pCtx->Rx[nb], pCtx->Ry[nb]); pCtx->state = ECC_POINT_MULT_STATE_BIT_ADD; return 0; case ECC_POINT_MULT_STATE_BIT_ADD: nb = !vli_testBit(scalar, pCtx->i); XYcZ_add(pCtx->Rx[nb], pCtx->Ry[nb], pCtx->Rx[1 - nb], pCtx->Ry[1 - nb]); pCtx->i--; pCtx->state = (pCtx->i > 0) ? ECC_POINT_MULT_STATE_BIT_ADDC : ECC_POINT_MULT_STATE_EXIT_ADDC; return 0; case ECC_POINT_MULT_STATE_EXIT_ADDC: nb = !vli_testBit(scalar, 0); XYcZ_addC(pCtx->Rx[1 - nb], pCtx->Ry[1 - nb], pCtx->Rx[nb], pCtx->Ry[nb]); pCtx->state = ECC_POINT_MULT_STATE_EXIT_ADD; return 0; case ECC_POINT_MULT_STATE_EXIT_ADD: nb = !vli_testBit(scalar, 0); /* Find final 1/Z value. */ vli_modSub_fast(z, pCtx->Rx[1], pCtx->Rx[0]); /* X1 - X0 */ vli_modMult_fast(z, z, pCtx->Ry[1 - nb]); /* Yb * (X1 - X0) */ vli_modMult_fast(z, z, point->x); /* xP * Yb * (X1 - X0) */ vli_modInv(z, z, curve_p); /* 1 / (xP * Yb * (X1 - X0)) */ vli_modMult_fast(z, z, point->y); /* yP / (xP * Yb * (X1 - X0)) */ vli_modMult_fast(z, z, pCtx->Rx[1 - nb]); /* Xb * yP / (xP * Yb * (X1 - X0)) */ /* End 1/Z calculation */ XYcZ_add(pCtx->Rx[nb], pCtx->Ry[nb], pCtx->Rx[1 - nb], pCtx->Ry[1 - nb]); apply_z(pCtx->Rx[0], pCtx->Ry[0], z); vli_set(result->x, pCtx->Rx[0]); vli_set(result->y, pCtx->Ry[0]); pCtx->state = ECC_POINT_MULT_STATE_COMPLETE; return 1; case ECC_POINT_MULT_STATE_COMPLETE: default: return 1; } } #if uECC_WORD_SIZE == 4 static void vli_nativeToBytes(uint8_t *bytes, const uint32_t *native) { unsigned i; for (i = 0; i < uECC_WORDS; ++i) { uint8_t *digit = bytes + 4 * (uECC_WORDS - 1 - i); digit[0] = (uint8_t)(native[i] >> 24); digit[1] = (uint8_t)(native[i] >> 16); digit[2] = (uint8_t)(native[i] >> 8); digit[3] = (uint8_t)(native[i]); } } static void vli_bytesToNative(uint32_t *native, const uint8_t *bytes) { unsigned i; for (i = 0; i < uECC_WORDS; ++i) { const uint8_t *digit = bytes + 4 * (uECC_WORDS - 1 - i); native[i] = ((uint32_t)digit[0] << 24) | ((uint32_t)digit[1] << 16) | ((uint32_t)digit[2] << 8) | (uint32_t)digit[3]; } } #endif /* uECC_WORD_SIZE */ enum { ECC_MAKE_KEY_STATE_INIT, ECC_MAKE_KEY_STATE_ECC_POINT_MULT, ECC_MAKE_KEY_STATE_EXIT, ECC_MAKE_KEY_STATE_COMPLETE }; typedef struct EccMakeKeyCtx { uint8_t state; uECC_word_t private[uECC_WORDS]; EccPoint public; uECC_word_t tmp1[uECC_WORDS]; uECC_word_t tmp2[uECC_WORDS]; uECC_word_t *p2[2]; uECC_word_t carry; EccPointMultCtx pointMultCtx; } EccMakeKeyCtx; typedef struct EccSharedSecretCtx { uECC_word_t random[uECC_WORDS]; uECC_word_t *initial_Z; EccPoint public; EccPoint product; uECC_word_t private[uECC_WORDS]; uECC_word_t tmp[uECC_WORDS]; uECC_word_t *p2[2]; uECC_word_t carry; EccPointMultCtx pointMultCtx; } EccSharedSecretCtx; typedef union EccCtx { EccMakeKeyCtx makeKey; EccSharedSecretCtx sharedSecret; } EccCtx; static EccCtx uECC_ctx; /************************************************************************************************** Make Key **************************************************************************************************/ void uECC_make_key_start(const uint8_t private_key[uECC_BYTES]) { memset(&uECC_ctx, 0, sizeof(uECC_ctx)); uECC_ctx.makeKey.state = ECC_MAKE_KEY_STATE_INIT; vli_bytesToNative(uECC_ctx.makeKey.private, private_key); } int uECC_make_key_continue(void) { switch (uECC_ctx.makeKey.state) { case ECC_MAKE_KEY_STATE_INIT: /* Make sure the private key is in the range [1, n-1]. */ if (vli_isZero(uECC_ctx.makeKey.private)) { return 0; } if (vli_cmp(curve_n, uECC_ctx.makeKey.private) != 1) { return 0; } // Regularize the bitcount for the private key so that attackers cannot use a side channel // attack to learn the number of leading zeros. uECC_ctx.makeKey.p2[0] = uECC_ctx.makeKey.tmp1; uECC_ctx.makeKey.p2[1] = uECC_ctx.makeKey.tmp2; uECC_ctx.makeKey.carry = vli_add(uECC_ctx.makeKey.tmp1, uECC_ctx.makeKey.private, curve_n); vli_add(uECC_ctx.makeKey.tmp2, uECC_ctx.makeKey.tmp1, curve_n); uECC_ctx.makeKey.pointMultCtx.state = 0; uECC_ctx.makeKey.state = ECC_MAKE_KEY_STATE_ECC_POINT_MULT; return 0; case ECC_MAKE_KEY_STATE_ECC_POINT_MULT: if (EccPoint_mult(&uECC_ctx.makeKey.pointMultCtx, &uECC_ctx.makeKey.public, &curve_G, uECC_ctx.makeKey.p2[!uECC_ctx.makeKey.carry], 0, (uECC_BYTES * 8) + 1)) { uECC_ctx.makeKey.state = ECC_MAKE_KEY_STATE_EXIT; } return 0; case ECC_MAKE_KEY_STATE_EXIT: if (EccPoint_isZero(&uECC_ctx.makeKey.public)) { uECC_ctx.makeKey.state = ECC_MAKE_KEY_STATE_INIT; return 0; } uECC_ctx.makeKey.state = ECC_MAKE_KEY_STATE_COMPLETE; return 1; case ECC_MAKE_KEY_STATE_COMPLETE: default: return 1; } } void uECC_make_key_complete(uint8_t public_key[uECC_BYTES*2], uint8_t private_key[uECC_BYTES]) { vli_nativeToBytes(private_key, uECC_ctx.makeKey.private); vli_nativeToBytes(public_key, uECC_ctx.makeKey.public.x); vli_nativeToBytes(public_key + uECC_BYTES, uECC_ctx.makeKey.public.y); } /************************************************************************************************** Validate Key **************************************************************************************************/ int uECC_valid_public_key_ll(const uint8_t public_key[uECC_BYTES*2]) { uECC_word_t tmp1[uECC_WORDS]; uECC_word_t tmp2[uECC_WORDS]; EccPoint public; vli_bytesToNative(public.x, public_key); vli_bytesToNative(public.y, public_key + uECC_BYTES); // The point at infinity is invalid. if (EccPoint_isZero(&public)) { return 0; } // x and y must be smaller than p. if (vli_cmp(curve_p, public.x) != 1 || vli_cmp(curve_p, public.y) != 1) { return 0; } vli_modSquare_fast(tmp1, public.y); /* tmp1 = y^2 */ curve_x_side(tmp2, public.x); /* tmp2 = x^3 + ax + b */ /* Make sure that y^2 == x^3 + ax + b */ return (vli_cmp(tmp1, tmp2) == 0); } /************************************************************************************************** Shared Secret **************************************************************************************************/ void uECC_shared_secret_start(const uint8_t public_key[uECC_BYTES*2], const uint8_t private_key[uECC_BYTES]) { uECC_word_t tries; memset(&uECC_ctx, 0, sizeof(uECC_ctx)); // Try to get a random initial Z value to improve protection against side-channel // attacks. If the RNG fails every time (eg it was not defined), we continue so that // uECC_shared_secret() can still work without an RNG defined. uECC_ctx.sharedSecret.initial_Z = NULL; for (tries = 0; tries < MAX_TRIES; ++tries) { if (g_rng_function((uint8_t *)uECC_ctx.sharedSecret.random, sizeof(uECC_ctx.sharedSecret.random)) && !vli_isZero(uECC_ctx.sharedSecret.random)) { uECC_ctx.sharedSecret.initial_Z = uECC_ctx.sharedSecret.random; break; } } vli_bytesToNative(uECC_ctx.sharedSecret.private, private_key); vli_bytesToNative(uECC_ctx.sharedSecret.public.x, public_key); vli_bytesToNative(uECC_ctx.sharedSecret.public.y, public_key + uECC_BYTES); // Regularize the bitcount for the private key so that attackers cannot use a side channel // attack to learn the number of leading zeros. uECC_ctx.sharedSecret.p2[0] = uECC_ctx.sharedSecret.private; uECC_ctx.sharedSecret.p2[1] = uECC_ctx.sharedSecret.tmp; uECC_ctx.sharedSecret.carry = vli_add(uECC_ctx.sharedSecret.private, uECC_ctx.sharedSecret.private, curve_n); vli_add(uECC_ctx.sharedSecret.tmp, uECC_ctx.sharedSecret.private, curve_n); uECC_ctx.sharedSecret.pointMultCtx.state = 0; } int uECC_shared_secret_continue(void) { return EccPoint_mult(&uECC_ctx.sharedSecret.pointMultCtx, &uECC_ctx.sharedSecret.product, &uECC_ctx.sharedSecret.public, uECC_ctx.sharedSecret.p2[!uECC_ctx.sharedSecret.carry], uECC_ctx.sharedSecret.initial_Z, (uECC_BYTES * 8) + 1); } void uECC_shared_secret_complete(uint8_t secret[uECC_BYTES]) { vli_nativeToBytes(secret, uECC_ctx.sharedSecret.product.x); }