Adaptive Composite AMG Solvers with Graph Modularity Coarsening

Austen Nelson ¹ and Panayot S. Vassilevski¹

¹Portland State University, ajn6@pdx.edu, panayot@pdx.edu

MTH 501 Research Project February 1, 2024

Overview

Background

- Problem Statement
- Stationary Iteration Theory
- Motivating Example
- Elements of Multigrid Methods
- Shortcomings of Geometric Multigrid

Algorithms

- Adaptivity Algorithm Overview
- Composition of Solvers
- Identifying the Near-nullspace
- Hierarchy Construction with Modularity

Results

References

Want to solve the linear matrix system:

$$A\mathbf{x} = b$$

Where *A* is symmetric positive definite (s.p.d.).

Often resulting from discretizations of elliptic PDEs:

$$\begin{cases} -\Delta u = f &, \text{ in } \Omega \\ u = 0 &, \text{ on } \partial \Omega \end{cases}$$

or with a diffusion coefficient

$$\begin{cases} -\nabla \cdot (\beta \nabla u) = f &, \text{ in } \Omega \\ u = 0 &, \text{ on } \partial \Omega \end{cases}$$

Stationary Iteration Algorithm

- **Data:** Matrix *A*, method matrix *B*, vector *b*, initial guess *x*, convergence tolerance ε , maximum iterations max_iter **Result:** Approximate solution to Ax = b
- $1 r \leftarrow b Ax$ // Initial residual 2 $r_{norm} \leftarrow ||r||$ $3 i \leftarrow 0$ 4 while $i < max_i$ ter do $r \leftarrow b - Ax$ // Current residual 5 6 | if $||r||/r_{norm} < \varepsilon$ then 7 return x // Convergence achieved 8 $x \leftarrow x + B^{-1}r$ // Update step $i \leftarrow i+1$ 9 10 return x // Max iterations reached

$$x_{i+1} = x_i + B^{-1}r_i$$

= $x_i + B^{-1}(b - Ax_i)$
= $B^{-1}b + (I - B^{-1}A)x_i$

We call $E := I - B^{-1}A$ the iteration matrix.

This functional iteration has a closed form of:

$$x_i = E^i x_0 + C(b)$$

$$x_{i+1} = Ex_i + B^{-1}b$$

The solution x is a fixed point of this functional iteration

$$x = Ex + B^{-1}b$$

Subtracting these two equations gives that,

$$e_{i+1} = Ee_i$$

hence,

$$e_m = E^m e_0$$

Choosing a vector norm and its induced matrix norm,

$$||e_m|| \le ||E||^m ||e_0||$$

 $||e_m|| \le ||E||^m ||e_0||$

Choosing the L^2 vector norm gives the spectral radius of E,

$$\|E\|_2 = \max |\lambda(E)|$$

which clearly must be less than 1 for the method to be convergent. In the context of iterative methods this is called the **Asymptotic Convergence Factor**.

$$-\log_{10} \|E\|_2$$

is called the **Asymptotic Convergence Rate** and its recipricol is the maximum number of iterations to reduce the error by an order of magnitude.

Simple Example (1d centered finite difference)

Consider $\Omega = (0,1)$ and

$$\begin{cases} -u'' = f & \text{in } \Omega\\ u(0) = u(1) = 0 \end{cases}$$

The classic centered finite difference discretization (*n* elements of length *h*) yields the familiar $n - 1 \times n - 1$ matrix system Ax = b:

$$A = \begin{pmatrix} 2 & -1 & & \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{pmatrix}, \ x = u_h, \ b = h^2 f_h$$

Example adapted from [BHM00]

Simple Example (weighted Jacobi method)

Let D be the diagonal of A. Choose

$$B^{-1} := \frac{2}{3}D^{-1} = \frac{1}{3}$$

as the method matrix. The resulting iteration matrix is

$$E = \left(I - \frac{1}{3}A\right)$$

The kth eigenvalue of E is

$$\lambda_k(E) = 1 - \frac{4}{3}\sin^2\left(\frac{k\pi}{2n}\right), \quad 1 \le k \le n-1$$

and the *j*th component of the associated eigenvector is

$$Q_{j,k} = \sin(x_j k \pi)$$

Notice that as h
ightarrow 0 we get $\|E\|_2
ightarrow 1$

Simple Example (spectral / convergence analysis)

$$\lambda_k(E) = 1 - \frac{4}{3}\sin^2\left(\frac{k\pi}{2n}\right), \quad 1 \le k \le n-1$$

 $Q_{j,k} = \sin(x_jk\pi)$

Let w_k be the *k*th eigenvector (column of Q).

$$e_{0} = \sum_{k=1}^{n-1} c_{k} w_{k}$$
$$e_{m} = E^{m} e_{0} = \sum_{k=1}^{n-1} c_{k} E^{m} w_{k} = \sum_{k=1}^{n-1} c_{k} \lambda_{k}^{m} w_{k}$$

The *k*th mode of e_0 is reduced by a factor of λ_k^m after *m* steps

Simple Example (spectrum visualization)

The *k*th eigenvector is the discretization of $sin(k\pi)$

Nelson/Vassilevski (PSU)

Simple Example (geometric multigrid solution)

Discretize with small h and iterate weighted Jacobi i times.

$$r_i = b - Ax_i$$

$$A^{-1}r_i = A^{-1}b - x_i$$

$$= e_i \approx \sum_{k=1}^{n/4} c_k w_k$$

$$r_i \approx \sum_{k=1}^{n/4} c_k \lambda_k(A) w_k$$

Main ideas of geometric multigrid:

- If we solve $Ae_i = r_i$, then $b = x_i + e_i$
- r_i and e_i are linear combinations of smooth eigenvectors
- Smooth eigenvectors are accurately represented on coarse grids

Anatomy of Multigrid

A multigrid method with ℓ levels has some basic components:

• Hierarchy of vector spaces, operators, and solvers

$$\{V_i\}_{i=1}^{\ell}, \{A_i\}_{i=1}^{\ell}, \{B_i\}_{i=1}^{\ell}$$

• Interpolation (or prolongation) Operators

$$\{P_i\}_{i=1}^{\ell-1}, \quad P_i: V_{i+1} \to V_i$$

Restriction Operators

$$\{R_i\}_{i=1}^{\ell-1}, \quad R_i: V_i \to V_{i+1}$$

In our case, all operators are matrices:

•
$$R_i := P_i^T$$

•
$$A_i: V_i \to V_i$$

•
$$A_{i+1} := P_i^T A_i P_i$$

V—Cycle Algorithm (recursive definition)

Initial call: $x_{i+1} \leftarrow V(x_i, b, 1)$

- **Data:** Levels ℓ , hierarchy $A = \{A_i\}_{i=1}^{\ell}$, smoothers $B = \{B_i\}_{i=1}^{\ell}$, interpolation operators $P = \{P_i\}_{i=1}^{\ell-1}$, current iterate x, rhs vector b, smoothing steps s, current level k**Result:** Next Iterate (or update) $x_{new} \leftarrow V(x, b, k)$
- 1 if $k \neq \ell$ then
- 2 Relax for s iterations on $A_k x = b$ with B_k^{-1} (stationary algorithm)
- 3 $r \leftarrow b A_k x$
- $4 \quad r_c = P_k^T r$
- $5 \quad k \leftarrow k+1$
- $\mathbf{6} \quad c \leftarrow V(\mathbf{0}, r_c, k)$
- 7 $\lfloor x \leftarrow x + P_k c$
- 8 Relax for s iterations on $A_k x = b$ with B_k^{-1}
- 9 return x

Geometric Multigrid

- Requires a hierarchy of refinements (h or p)
- Interpolation and restriction operators come from this hierarchy
- For 'nice' problems iteration scaling is $\mathcal{O}(1)$
- Analysis is fairly simple and well understood

Algebraic Multigrid

- No knowledge of problem structure/nature required
 - can be utilized for heuristics
- 'Black Box' for the end user with varying levels of tuning
- 'Algebraically' finds R and P matrices from A
- Solver construction and application can be expensive
- General analysis is difficult

Let $\Omega \subset \mathbb{R}^3$.

$$\begin{cases} -\nabla \cdot (\beta \nabla u) = f &, \text{ on } \Omega \\ u = 0 &, \text{ on } \partial \Omega \end{cases}$$
$$\beta := \varepsilon I + \boldsymbol{b} \boldsymbol{b}^{T}$$
for small $\varepsilon > 0$ and
$$\begin{bmatrix} \cos \theta \cos \phi \end{bmatrix}$$

$$\boldsymbol{b} := \begin{bmatrix} \cos\theta\cos\phi\\ \sin\theta\cos\phi\\ \sin\phi \end{bmatrix}$$

3

16/30

イロト イポト イヨト イヨト

Anisotropy — Algebraic Smoothness

Heterogeneous Coefficients (SPE10)

$$egin{cases} -
abla \cdot (eta
abla u) = f &, ext{ on } \Omega \ u = 0 &, ext{ on } \partial \Omega \end{cases}$$

In this case, β (called the permiability) is a piecewise constant diagonal matrix coefficient (constant on each element).

SPE10 Clipped Cross Section (High Permeability)

Data: Matrix *A*, desired convergence factor ρ , max components *m*, smoother type *B* **Result:** Adaptive Solver \overline{B}

1 $\overline{B} \leftarrow \text{CreateSolver}(B, A)$

2
$$i, cf \leftarrow 1$$

3 while $\rho < cf$ and i < m do

$$\begin{array}{c|c} 4 & w, cf \leftarrow \text{TestHomogeneous}(A, \overline{B}) \\ 5 & w = w/\|w\|_2 \end{array}$$

$$B_{new} \leftarrow AdaptiveMLSolver(B, A, w)$$

$$\overline{B} \leftarrow \mathsf{SymmetricComposition}(\overline{B}, B_{new})$$

$$i \leftarrow i+1$$

7

Composition of Solvers

$$I - B^{-1}A = (I - B_1^{-T}A)(I - B_0^{-1}A)(I - B_1^{-1}A).$$
(1)

$$B^{-1} = \overline{B}_1^{-1} + (I - B_1^{-T}A)B_0^{-1}(I - AB_1^{-1}).$$
⁽²⁾

 \overline{B}_1 is a symmetrization of B_1 (if needed)

$$\overline{B}_1 = B_1 (B_1 + B_1^T - A)^{-1} B_1^T.$$
(3)

Lemma

If B_0 is s.p.d. and B_0 and B_1 are A-convergent solvers, then their composition defined in (1) or equivalently, in (2), is s.p.d. and B is also A-convergent. Also, if the symmetrized solver \overline{B}_1 (see (3)) satisfies $\|\overline{B}_1\| \le c_0 \|A\|$ for some constant $c_0 > 0$, then the same inequality holds for B, i.e., $\|B\| \le c_0 \|A\|$. Finally, if B_1 is s.p.d. and satisfies the inequalities $\mathbf{v}^T B_1 \mathbf{v} \ge \mathbf{v}^T A \mathbf{v}$ and $\|B_1\| \le c_0 \|A\|$, we have $\|B\| \le \|\overline{B}_1\| \le \|B_1\| \le c_0 \|A\|$.

Algebraically Smooth Error is Near-nullspace of A

$$A\mathbf{x} = 0$$
, gives $B(\mathbf{x}_k - \mathbf{x}_{k-1}) = -A\mathbf{x}_{k-1}$ (4)

Theorem

Let B define an s.p.d. A-convergent iterative method such that $\frac{\mathbf{v}^T A \mathbf{v}}{\mathbf{v}^T B \mathbf{v}} < 1$ and $\|B\| \simeq \|A\|$, i.e., $\|B\| \le c_0 \|A\|$ for a constant $c_0 \ge 1$. Consider any vector \mathbf{w} such that the iteration process (4) with B stalls for it, i.e.,

$$1 \ge \frac{\|(I - B^{-1}A)\mathbf{w}\|_{A}^{2}}{\|\mathbf{w}\|_{A}^{2}} \ge 1 - \delta,$$
(5)

for some small $\delta \in (0, 1)$. Then, the following estimate holds $\|A\mathbf{w}\|^2 \leq c_0 \|A\| \ \delta \|\mathbf{w}\|_A^2$.

Since $A\mathbf{w} \approx 0$ componentwise by construction, we have for each *i*

$$0\approx w_i\sum_j a_{ij}w_j,$$

or equivalently

$$0 \leq a_{ii}w_i^2 \approx \sum_{j\neq i} (-w_i a_{ij}w_j).$$

Then, $\overline{A} = (\overline{a}_{ij})$ with non-zero entries $\overline{a}_{ij} = -w_i a_{ij} w_j$, $(i \neq j)$ has positive row-sums.

 \overline{A} is the sparse adjacency matrix associated with the connectivity strength graph G.

Modularity Matching (Coarsening) for AMG Hierarchy

Let $\mathbf{1} = (1) \in \mathbb{R}^n$ be the unity constant vector, $\mathbf{r} = A\mathbf{1}$, and $T = \sum_i r_i = \mathbf{1}^T A \mathbf{1}$.

The Modularity Matrix [New10]

$$B = A - \frac{1}{T} \mathbf{r} \mathbf{r}^T.$$

By construction, we have that

$$B\mathbf{1} = 0. \tag{6}$$

The Modularity Functional [QV19]

$$Q = \frac{1}{T} \sum_{\mathcal{A}} \sum_{i, j \in \mathcal{A}} b_{ij} = \frac{1}{T} \sum_{\mathcal{A}} \sum_{i, j \in \mathcal{A}} \left(a_{ij} - \frac{r_i r_j}{T} \right).$$

Hierarchy Visualization for 2d Anisotropy

2d Anisotropy (top) and SPE10 (bottom)

Nelson/Vassilevski (PSU)

Adaptive AMG

February 1, 2024 26 / 30

G3-circuit (top) and Janna-Flan (bottom)

Nelson/Vassilevski (PSU)

Adaptive AMG

February 1, 2024 27 / 30

As Preconditioner for Conjugate Gradient

Nelson/Vassilevski (PSU) Adaptive AMG

- We suspect the interpolation technique is limiting the solver / PC performance
- Study the algorithmic and implementation scalability
- Study more advanced relaxation techniques
- Study applications to eigensolvers

Submitted work to a student paper competition (with presentation) for:

18th Copper Mountain Conference On Iterative Methods Sunday April 14 - Friday April 19, 2024

- William L. Briggs, Van Emden Henson, and Steve F. McCormick, *A multigrid tutorial, second edition,* second ed., Society for Industrial and Applied Mathematics, 2000.
- M.E.J. Newman, *Networks. an introduction*, Oxford University Press, New York, 2010.
- B.G. Quiring and P.S. Vassilevski, Properties of the Graph Modularity Matrix and Its Applications, Tech. report, LLNL-TR-779424, Lawrence Livermore National Laboratory, June 26, 2019.