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Problem Statement

Want to solve the linear matrix system:

Ax = b

Where A is symmetric positive definite (s.p.d.).

Often resulting from discretizations of elliptic PDEs:{
−∆u = f , in Ω

u = 0 , on ∂Ω

or with a diffusion coefficient{
−∇ · (β∇u) = f , in Ω

u = 0 , on ∂Ω
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Stationary Iteration Algorithm

Data: Matrix A, method matrix B, vector b, initial guess x ,
convergence tolerance ε, maximum iterations max iter

Result: Approximate solution to Ax = b

1 r ← b − Ax // Initial residual

2 rnorm ← ∥r∥
3 i ← 0
4 while i < max iter do
5 r ← b − Ax // Current residual

6 if ∥r∥/rnorm < ε then
7 return x // Convergence achieved

8 x ← x + B−1r // Update step

9 i ← i + 1

10 return x // Max iterations reached
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Stationary Iteration Analysis

xi+1 = xi + B−1ri

= xi + B−1(b − Axi )

= B−1b + (I − B−1A)xi

We call E := I − B−1A the iteration matrix.

This functional iteration has a closed form of:

xi = E ix0 + C (b)
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Stationary Iteration Analysis

xi+1 = Exi + B−1b

The solution x is a fixed point of this functional iteration

x = Ex + B−1b

Subtracting these two equations gives that,

ei+1 = Eei

hence,
em = Eme0

Choosing a vector norm and its induced matrix norm,

∥em∥ ≤ ∥E∥m∥e0∥
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Stationary Iteration Analysis

∥em∥ ≤ ∥E∥m∥e0∥

Choosing the L2 vector norm gives the spectral radius of E ,

∥E∥2 = max |λ(E )|

which clearly must be less than 1 for the method to be convergent. In
the context of iterative methods this is called the Asymptotic
Convergence Factor.

− log10 ∥E∥2
is called the Asymptotic Convergence Rate and its recipricol is the
maximum number of iterations to reduce the error by an order of
magnitude.
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Simple Example (1d centered finite difference)

Consider Ω = (0, 1) and{
−u′′ = f in Ω

u(0) = u(1) = 0

The classic centered finite difference discretization (n elements of
length h) yields the familiar n − 1× n − 1 matrix system Ax = b:

A =


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

 , x = uh, b = h2fh

Example adapted from [BHM00]
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Simple Example (weighted Jacobi method)

Let D be the diagonal of A. Choose

B−1 :=
2

3
D−1 =

1

3

as the method matrix. The resulting iteration matrix is

E =

(
I − 1

3
A

)
The kth eigenvalue of E is

λk(E ) = 1− 4

3
sin2

(
kπ

2n

)
, 1 ≤ k ≤ n − 1

and the jth component of the associated eigenvector is

Qj ,k = sin(xjkπ)

Notice that as h→ 0 we get ∥E∥2 → 1
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Simple Example (spectral / convergence analysis)

λk(E ) = 1− 4

3
sin2

(
kπ

2n

)
, 1 ≤ k ≤ n − 1

Qj ,k = sin(xjkπ)

Let wk be the kth eigenvector (column of Q).

e0 =
n−1∑
k=1

ckwk

em = Eme0 =
n−1∑
k=1

ckE
mwk =

n−1∑
k=1

ckλ
m
k wk

The kth mode of e0 is reduced by a factor of λm
k after m steps
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Simple Example (spectrum visualization)

The kth eigenvector is the discretization of sin(kπ)
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Simple Example (geometric multigrid solution)

Discretize with small h and iterate weighted Jacobi i times.

ri = b − Axi

A−1ri = A−1b − xi

= ei ≈
n/4∑
k=1

ckwk

ri ≈
n/4∑
k=1

ckλk(A)wk

Main ideas of geometric multigrid:

If we solve Aei = ri , then b = xi + ei

ri and ei are linear combinations of smooth eigenvectors

Smooth eigenvectors are accurately represented on coarse grids
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Anatomy of Multigrid

A multigrid method with ℓ levels has some basic components:

Hierarchy of vector spaces, operators, and solvers

{Vi}ℓi=1, {Ai}ℓi=1, {Bi}ℓi=1

Interpolation (or prolongation) Operators

{Pi}ℓ−1
i=1 , Pi : Vi+1 → Vi

Restriction Operators

{Ri}ℓ−1
i=1 , Ri : Vi → Vi+1

In our case, all operators are matrices:

Ri := PT
i

Ai : Vi → Vi

Ai+1 := PT
i AiPi
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V—Cycle Algorithm (recursive definition)

Initial call: xi+1 ← V (xi , b, 1)

Data: Levels ℓ, hierarchy A = {Ai}ℓi=1, smoothers B = {Bi}ℓi=1,
interpolation operators P = {Pi}ℓ−1

i=1 , current iterate x , rhs
vector b, smoothing steps s, current level k

Result: Next Iterate (or update) xnew ← V (x , b, k)

1 if k ̸= ℓ then
2 Relax for s iterations on Akx = b with B−1

k (stationary algorithm)
3 r ← b − Akx

4 rc = PT
k r

5 k ← k + 1
6 c ← V (0, rc , k)
7 x ← x + Pkc

8 Relax for s iterations on Akx = b with B−1
k

9 return x
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Algebraic vs Geometric Multigrid

Geometric Multigrid

Requires a hierarchy of refinements (h or p)

Interpolation and restriction operators come from this hierarchy

For ‘nice’ problems iteration scaling is O(1)
Analysis is fairly simple and well understood

Algebraic Multigrid

No knowledge of problem structure/nature required

can be utilized for heuristics

‘Black Box’ for the end user with varying levels of tuning

‘Algebraically’ finds R and P matrices from A

Solver construction and application can be expensive

General analysis is difficult
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Anisotropy

Let Ω ⊂ R3. {
−∇ · (β∇u) = f , on Ω

u = 0 , on ∂Ω

β := εI + bbT

for small ε > 0 and

b :=

cos θ cosϕsin θ cosϕ
sinϕ
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Anisotropy — Algebraic Smoothness
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Heterogeneous Coefficients (SPE10)

{
−∇ · (β∇u) = f , on Ω

u = 0 , on ∂Ω

In this case, β (called the permiability) is a piecewise constant
diagonal matrix coefficient (constant on each element).

∥β∥2 on each element
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SPE10 Clipped Cross Section (High Permeability)
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Adaptivity Algorithm

Data: Matrix A, desired convergence factor ρ, max components m,
smoother type B

Result: Adaptive Solver B

1 B ← CreateSolver(B,A)
2 i , cf ← 1
3 while ρ < cf and i < m do
4 w , cf ← TestHomogeneous(A,B)
5 w = w/∥w∥2
6 Bnew ← AdaptiveMLSolver(B,A,w)

7 B ← SymmetricComposition(B,Bnew )
8 i ← i + 1
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Composition of Solvers

I − B−1A = (I − B−T
1 A)(I − B−1

0 A)(I − B−1
1 A). (1)

B−1 = B
−1
1 + (I − B−T

1 A)B−1
0 (I − AB−1

1 ). (2)

B1 is a symmetrization of B1 (if needed)

B1 = B1(B1 + BT
1 − A)−1BT

1 . (3)

Lemma

If B0 is s.p.d. and B0 and B1 are A-convergent solvers, then their
composition defined in (1) or equivalently, in (2), is s.p.d. and B is
also A-convergent. Also, if the symmetrized solver B1 (see (3))
satisfies ∥B1∥ ≤ c0∥A∥ for some constant c0 > 0, then the same
inequality holds for B, i.e., ∥B∥ ≤ c0∥A∥. Finally, if B1 is s.p.d. and
satisfies the inequalities vTB1v ≥ vTAv and ∥B1∥ ≤ c0∥A∥, we have
∥B∥ ≤ ∥B1∥ ≤ ∥B1∥ ≤ c0∥A∥.
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Algebraically Smooth Error is Near-nullspace of A

Ax = 0, gives B(xk − xk−1) = −Axk−1 (4)

Theorem

Let B define an s.p.d. A-convergent iterative method such that
vTAv
vTBv

< 1 and ∥B∥ ≃ ∥A∥, i.e., ∥B∥ ≤ c0∥A∥ for a constant c0 ≥ 1.
Consider any vector w such that the iteration process (4) with B
stalls for it, i.e.,

1 ≥
∥(I − B−1A)w∥2A

∥w∥2A
≥ 1− δ, (5)

for some small δ ∈ (0, 1). Then, the following estimate holds
∥Aw∥2 ≤ c0∥A∥ δ∥w∥2A.
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Strength of Connectivity Graph

Since Aw ≈ 0 componentwise by construction, we have for each i

0 ≈ wi

∑
j

aijwj ,

or equivalently

0 ≤ aiiw
2
i ≈

∑
j ̸=i

(−wiaijwj).

Then, A = (aij) with non-zero entries aij = −wiaijwj , (i ̸= j) has
positive row-sums.

A is the sparse adjacency matrix associated with the connectivity
strength graph G .
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Modularity Matching (Coarsening) for AMG Hierarchy

Let 1 = (1) ∈ Rn be the unity constant vector, r = A1, and
T =

∑
i
ri = 1TA1.

The Modularity Matrix [New10]

B = A− 1

T
rrT .

By construction, we have that

B1 = 0. (6)

The Modularity Functional [QV19]

Q =
1

T

∑
A

∑
i , j∈A

bij =
1

T

∑
A

∑
i , j∈A

(
aij −

ri rj
T

)
.
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Hierarchy Visualization for 2d Anisotropy
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2d Anisotropy (top) and SPE10 (bottom)

Stationary Tester
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G3-circuit (top) and Janna-Flan (bottom)

Stationary Tester
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As Preconditioner for Conjugate Gradient

2d Anisotropy

G3-circuit

SPE10 (inverted coefficient)

Janna-Flan
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Future Work

We suspect the interpolation technique is limiting the solver /
PC performance

Study the algorithmic and implementation scalability

Study more advanced relaxation techniques

Study applications to eigensolvers

Submitted work to a student paper competition (with presentation)
for:

18th Copper Mountain Conference On Iterative Methods
Sunday April 14 - Friday April 19, 2024
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