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Problem Statement

Want to solve the linear matrix system:
Ax=0>b
Where A is symmetric positive definite (s.p.d.).

Often resulting from discretizations of elliptic PDEs:
—Au=1Ff ,inQ
u=20 , on 0Q

or with a diffusion coefficient

-V-(BVu)=f ,inQ
u=20 , on 0Q2

Nelson/Vassilevski (PSU) Adaptive AMG February 1, 2024



Stationary lteration Algorithm

Data: Matrix A, method matrix B, vector b, initial guess x,
convergence tolerance €, maximum iterations max_iter
Result: Approximate solution to Ax = b

1r+ b—Ax // Initial residual
2 rporm < || ||
3i+0
4 while / < max_iter do
5 r< b— Ax // Current residual
6 if ||7||/rnorm < € then
7 L return x // Convergence achieved
X+ x+ B71r // Update step
i+—i+1
10 return x // Max iterations reached
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Stationary lteration Analysis

Xit1=xi+ Bt
= x; + B7Y(b - Ax;)
=B b+ (I - B tA)x

We call E := | — B~1A the iteration matrix.
This functional iteration has a closed form of:

Xj = EiXO —+ C(b)
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Stationary lteration Analysis

xit1 = Ex; + B7tb
The solution x is a fixed point of this functional iteration
x=Ex+ B 'b
Subtracting these two equations gives that,
eiv1 = Ee;

hence,
em = EMegy

Choosing a vector norm and its induced matrix norm,

leml < [IE]™ ol
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Stationary lteration Analysis

leml < [IE]™leoll

Choosing the L? vector norm gives the spectral radius of E,
IE]l2 = max [A(E)

which clearly must be less than 1 for the method to be convergent. In
the context of iterative methods this is called the Asymptotic
Convergence Factor.

—logyg HEH2

is called the Asymptotic Convergence Rate and its recipricol is the
maximum number of iterations to reduce the error by an order of
magnitude.
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Simple Example (1d centered finite difference)

Consider Q = (0,1) and

{—u" =f in Q
u(0)=u(1l)=0

The classic centered finite difference discretization (n elements of
length h) yields the familiar n — 1 x n — 1 matrix system Ax = b:

A= , X = up, b= hf,

Example adapted from [BHMOO]
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Simple Example (weighted Jacobi method)

Let D be the diagonal of A. Choose

2 1
B l=D1t=2
3 3

as the method matrix. The resulting iteration matrix is

(-3

The kth eigenvalue of E is

4 5 (km
=1 — — — < < n—
M(E)=1 3sm (2n>’ 1<k<n-1

and the jth component of the associated eigenvector is
Qj k = sin(xjkm)

Notice that as h — 0 we get ||E|2 — 1
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Simple Example (spectral / convergence analysis)

4 5 (km

— — — R < < —_

M(E)=1 3sm <2n>’ 1<k<n-1
QJ"k :sin(xjk7r)

Let wy be the kth eigenvector (column of Q).

n—1
€ = E Ci Wy
k=1

n—1 n—1
em = Emeo = Z CkEka = E Ck)\TWk
k=1 k=1

The kth mode of ¢ is reduced by a factor of \] after m steps
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Simple Example (spectrum visualization)

Plot of Ak(E) vs k
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The kth eigenvector is the discretization of sin(k)
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Simple Example (geometric multigrid solution)

Discretize with small h and iterate weighted Jacobi / times.

ri = b— AX,'
Al = A"l — x;
n/4
=6 = Z Ci Wy
k=1
n/4
ri = Z Ck)\k(A)Wk
k=1

Main ideas of geometric multigrid:
o If we solve Ae; = rj, then b = x; + ¢;
@ r; and ¢; are linear combinations of smooth eigenvectors

@ Smooth eigenvectors are accurately represented on coarse grids
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Anatomy of Multigrid

A multigrid method with ¢ levels has some basic components:

@ Hierarchy of vector spaces, operators, and solvers
(Vi {Adi, {Bi}ia
@ Interpolation (or prolongation) Operators
{P}, 1, Pi:Vigai—V
@ Restriction Operators
{RYZl, Ri:Vi— Vig

In our case, all operators are matrices:
o Ri:= PI-T
e A :V,—=V
o Aiy1:=PTAP;
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V—Cycle Algorithm (recursive definition)

Initial call: x;41 < V(x;, b, 1)

Data: Levels ¢, hierarchy A = {A;}¢_;, smoothers B = {B;}_,,
interpolation operators P = {P;}'Z1, current iterate x, rhs
vector b, smoothing steps s, current level k

Result: Next lterate (or update) xpen < V(x, b, k)
1 if k # / then

2 Relax for s iterations on Agx = b with B, ! (stationary algorithm)
3 r< b— Axx

4 re = P,Z—r

5 k<« k+1

6 c <+ V(0,rc, k)

7

X < x + Pc

8 Relax for s iterations on Axx = b with Bk_1
9 return x
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Algebraic vs Geometric Multigrid

Geometric Multigrid
@ Requires a hierarchy of refinements (h or p)
@ Interpolation and restriction operators come from this hierarchy
@ For ‘nice’ problems iteration scaling is O(1)
@ Analysis is fairly simple and well understood
Algebraic Multigrid

@ No knowledge of problem structure/nature required
e can be utilized for heuristics

‘Black Box' for the end user with varying levels of tuning
‘Algebraically’ finds R and P matrices from A
Solver construction and application can be expensive

General analysis is difficult
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Let Q C R3.

{—V-(ﬂVu):f , on Q

u=20 , on 090
B:=el+bb"
for small € > 0 and
cos cos ¢
b := |sinfcos ¢
sin ¢
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Anisotropy — Algebraic Smoothness
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Heterogeneous Coefficients (SPE10)

—V-(BVu)=1f ,onQ
u=20 , on 09

In this case, 3 (called the permiability) is a piecewise constant
diagonal matrix coefficient (constant on each element).

|3]|> on each element

permiabilty
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SPE10 Clipped Cross Section (High Permeability)
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Adaptivity Algorithm

Data: Matrix A, desired convergence factor p, max components m,
smoother type B
Result: Adaptive Solver B

1 B <« CreateSolver(B, A)

2 j,cf +1

3 while p < ¢f and i < m do

4 w, cf < TestHomogeneous(A, B)

w = w/wl;

Bhew < AdaptiveMLSolver(B, A, w)
B + SymmetricComposition(B, Bew)
i+—i+1

0 N o o
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Composition of Solvers

| —B7YA= (1 - By TA)(I — By *A) (I — B *A). (1)
B =B, +(I—B; TA)B; (I — AB;). (2)

B is a symmetrization of B; (if needed)
B1=Bi(Bi +B] —A)'B/. (3)

If By is s.p.d. and By and By are A-convergent solvers, then their
composition defined in (1) or equivalently, in (2), is s.p.d. and B is
also A-convergent. Also, if the symmetrized solver By (see (3))
satisfies | B1|| < col||A| for some constant cy > 0, then the same
inequality holds for B, i.e., ||B|| < co||Al|. Finally, if By is s.p.d. and
satisfies the inequalities v Biv > v Av and ||By|| < col|A||, we have
181 < Bl < |1B1]] < collAl.
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Algebraically Smooth Error is Near-nullspace of A

Ax =0, gives B(xx — Xxx_1) = —Axk_1 (4)

Lgt B define an s.p.d. A-convergent iterative method such that
ngz < 1 and ||B|| ~ ||A|l, i.e., ||B|| < col|A|| for a constant ¢y > 1.
Consider any vector w such that the iteration process (4) with B

stalls for it, i.e.,

I(/ = B~ A)wl%

1>
Iwli%

>1-94, (5)

for some small § € (0,1). Then, the following estimate holds
1Aw|[? < col|All 8|w%-

Nelson/Vassilevski (PSU) Adaptive AMG February 1, 2024



Strength of Connectivity Graph

Since Aw =~ 0 componentwise by construction, we have for each i
0~ w; g ajjw;,
J

or equivalently
2
0 < ajiw; = Z(—W;a;jwj).
JF#i
Then, A = (3j;) with non-zero entries a; = —w;a;w;, (i # j) has
positive row-sums.

A is the sparse adjacency matrix associated with the connectivity
strength graph G.
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Modularity Matching (Coarsening) for AMG Hierarchy

Let 1 = (1) € R” be the unity constant vector, r = Al, and
T=r=1TAlL

The Modularity Matrix [New10]

1 T
B_—A_i .
rr

By construction, we have that
B1 =0. (6)

The Modularity Functional [QV19]
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Hierarchy Visualization for 2d Anisotropy
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2d Anisotropy (top) and SPE10 (bottom)
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G3-circuit (top) and Janna-Flan (bottom)
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As Preconditioner for Conjugate Gradient

2d Anisotropy SPE10 (inverted coefficient)
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o We suspect the interpolation technique is limiting the solver /
PC performance

@ Study the algorithmic and implementation scalability
@ Study more advanced relaxation techniques

@ Study applications to eigensolvers

Submitted work to a student paper competition (with presentation)
for:

18th Copper Mountain Conference On lIterative Methods
Sunday April 14 - Friday April 19, 2024
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