/*============================================================================= This file is part of Antic. Antic is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . =============================================================================*/ /****************************************************************************** Copyright (C) 2010 Sebastian Pancratz Copyright (C) 2011 Fredrik Johansson Copyright (C) 2014 William Hart ******************************************************************************/ #include "nf_elem.h" void _nf_elem_sub_lf(nf_elem_t a, const nf_elem_t b, const nf_elem_t c, const nf_t nf, int can) { const fmpz * const p = LNF_ELEM_NUMREF(b); const fmpz * const q = LNF_ELEM_DENREF(b); const fmpz * const r = LNF_ELEM_NUMREF(c); const fmpz * const s = LNF_ELEM_DENREF(c); fmpz * const rnum = LNF_ELEM_NUMREF(a); fmpz * const rden = LNF_ELEM_DENREF(a); fmpz_t t; if (can) _fmpq_sub(rnum, rden, p, q, r, s); else { /* Same denominator */ if (fmpz_equal(q, s)) { fmpz_sub(rnum, p, r); fmpz_set(rden, q); return; } /* p/q is an integer */ if (fmpz_is_one(q)) { fmpz_init(t); fmpz_mul(t, p, s); fmpz_sub(rnum, t, r); fmpz_set(rden, s); fmpz_clear(t); return; } /* r/s is an integer */ if (fmpz_is_one(s)) { fmpz_init(t); fmpz_mul(t, r, q); fmpz_sub(rnum, t, p); fmpz_set(rden, q); fmpz_clear(t); return; } /* We want to compute p/q - r/s which is (p*s - q*r, q*s). */ fmpz_init(t); fmpz_mul(t, q, r); fmpz_mul(rnum, p, s); fmpz_sub(rnum, rnum, t); fmpz_mul(rden, q, s); fmpz_clear(t); } } void _nf_elem_sub_qf(nf_elem_t a, const nf_elem_t b, const nf_elem_t c, const nf_t nf, int can) { fmpz_t d; const fmpz * const bnum = QNF_ELEM_NUMREF(b); const fmpz * const bden = QNF_ELEM_DENREF(b); const fmpz * const cnum = QNF_ELEM_NUMREF(c); const fmpz * const cden = QNF_ELEM_DENREF(c); fmpz * const anum = QNF_ELEM_NUMREF(a); fmpz * const aden = QNF_ELEM_DENREF(a); fmpz_init(d); fmpz_one(d); if (fmpz_equal(bden, cden)) { fmpz_sub(anum, bnum, cnum); fmpz_sub(anum + 1, bnum + 1, cnum + 1); fmpz_sub(anum + 2, bnum + 2, cnum + 2); fmpz_set(aden, bden); if (can && !fmpz_is_one(aden)) { fmpz_gcd(d, anum, anum + 1); fmpz_gcd(d, d, anum + 2); if (!fmpz_is_one(d)) { fmpz_gcd(d, d, aden); if (!fmpz_is_one(d)) { fmpz_divexact(anum, anum, d); fmpz_divexact(anum + 1, anum + 1, d); fmpz_divexact(anum + 2, anum + 2, d); fmpz_divexact(aden, aden, d); } } } fmpz_clear(d); return; } if (!fmpz_is_one(bden) && !fmpz_is_one(cden)) fmpz_gcd(d, bden, cden); if (fmpz_is_one(d)) { fmpz_mul(anum, bnum, cden); fmpz_mul(anum + 1, bnum + 1, cden); fmpz_mul(anum + 2, bnum + 2, cden); fmpz_submul(anum, cnum, bden); fmpz_submul(anum + 1, cnum + 1, bden); fmpz_submul(anum + 2, cnum + 2, bden); fmpz_mul(aden, bden, cden); } else { fmpz_t bden1; fmpz_t cden1; fmpz_init(bden1); fmpz_init(cden1); fmpz_divexact(bden1, bden, d); fmpz_divexact(cden1, cden, d); fmpz_mul(anum, bnum, cden1); fmpz_mul(anum + 1, bnum + 1, cden1); fmpz_mul(anum + 2, bnum + 2, cden1); fmpz_submul(anum, cnum, bden1); fmpz_submul(anum + 1, cnum + 1, bden1); fmpz_submul(anum + 2, cnum + 2, bden1); if (fmpz_is_zero(anum) && fmpz_is_zero(anum + 1) && fmpz_is_zero(anum + 2)) fmpz_one(aden); else { if (can) { fmpz_t e; fmpz_init(e); fmpz_gcd(e, anum, anum + 1); fmpz_gcd(e, e, anum + 2); if (!fmpz_is_one(e)) fmpz_gcd(e, e, d); if (fmpz_is_one(e)) fmpz_mul(aden, bden, cden1); else { fmpz_divexact(anum, anum, e); fmpz_divexact(anum + 1, anum + 1, e); fmpz_divexact(anum + 2, anum + 2, e); fmpz_divexact(bden1, bden, e); fmpz_mul(aden, bden1, cden1); } fmpz_clear(e); } else fmpz_mul(aden, bden, cden1); } fmpz_clear(bden1); fmpz_clear(cden1); } fmpz_clear(d); } void nf_elem_sub_qf(nf_elem_t a, const nf_elem_t b, const nf_elem_t c, const nf_t nf) { if (a == c) { nf_elem_t t; nf_elem_init(t, nf); _nf_elem_sub_qf(t, b, c, nf, 1); nf_elem_swap(t, a, nf); nf_elem_clear(t, nf); } else _nf_elem_sub_qf(a, b, c, nf, 1); }