/*=============================================================================
This file is part of Antic.
Antic is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See .
=============================================================================*/
/******************************************************************************
Copyright (C) 2012 William Hart
******************************************************************************/
#include
#include
#include
#include "qfb.h"
int qfb_exponent_grh(fmpz_t exponent, fmpz_t n, ulong B1, ulong B2_sqrt)
{
fmpz_t p, exp, n2;
mpz_t mn;
qfb_t f;
ulong pr, nmodpr, s, grh_limit;
mpfr_t lim;
int ret = 1;
n_primes_t iter;
n_primes_init(iter);
fmpz_init(p);
fmpz_init(n2);
fmpz_init(exp);
qfb_init(f);
flint_mpz_init_set_readonly(mn, n);
mpfr_init_set_z(lim, mn, MPFR_RNDA);
mpfr_abs(lim, lim, MPFR_RNDU);
mpfr_log(lim, lim, MPFR_RNDU);
mpfr_mul(lim, lim, lim, MPFR_RNDU);
mpfr_mul_ui(lim, lim, 6, MPFR_RNDU);
grh_limit = mpfr_get_ui(lim, MPFR_RNDU);
fmpz_set_ui(exponent, 1);
/* find odd prime such that n is a square mod p */
pr = 0;
for (pr = 1; pr < grh_limit; )
{
do
{
pr = n_primes_next(iter);
nmodpr = fmpz_fdiv_ui(n, pr);
} while ((pr == 2 && ((s = fmpz_fdiv_ui(n, 8)) == 2 || s == 3 || s == 5))
|| (pr != 2 && nmodpr != 0 && n_jacobi(nmodpr, pr) < 0));
if (pr < grh_limit)
{
fmpz_set_ui(p, pr);
/* find prime form of discriminant n */
qfb_prime_form(f, n, p);
fmpz_set(n2, n);
/* deal with non-fundamental discriminants */
if (nmodpr == 0 && fmpz_fdiv_ui(f->c, pr) == 0)
{
fmpz_fdiv_q_ui(f->a, f->a, pr);
fmpz_fdiv_q_ui(f->b, f->b, pr);
fmpz_fdiv_q_ui(f->c, f->c, pr);
fmpz_fdiv_q_ui(n2, n2, pr*pr);
}
if (pr == 2 && fmpz_is_even(f->a)
&& fmpz_is_even(f->b) && fmpz_is_even(f->c))
{
fmpz_fdiv_q_2exp(f->a, f->a, 1);
fmpz_fdiv_q_2exp(f->b, f->b, 1);
fmpz_fdiv_q_2exp(f->c, f->c, 1);
fmpz_fdiv_q_2exp(n2, n2, 2);
}
qfb_reduce(f, f, n2);
if (!fmpz_is_one(exponent))
qfb_pow(f, f, n2, exponent);
if (!qfb_exponent_element(exp, f, n2, B1, B2_sqrt))
{
ret = 0;
goto cleanup;
}
if (!fmpz_is_one(exp))
fmpz_mul(exponent, exponent, exp);
}
}
cleanup:
qfb_clear(f);
fmpz_clear(p);
fmpz_clear(n2);
fmpz_clear(exp);
n_primes_clear(iter);
flint_mpz_clear_readonly(mn);
return ret;
}