/* dvdisaster: Additional error correction for optical media. * Copyright (C) 2004-2007 Carsten Gnoerlich. * Project home page: http://www.dvdisaster.com * Email: carsten@dvdisaster.com -or- cgnoerlich@fsfe.org * * The Reed-Solomon error correction draws a lot of inspiration - and even code - * from Phil Karn's excellent Reed-Solomon library: http://www.ka9q.net/code/fec/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA, * or direct your browser at http://www.gnu.org. */ #include #include "galois.h" /*** *** Galois field arithmetic. *** * Calculations are done over the extension field GF(2**n). * Be careful not to overgeneralize these arithmetics; * they only work for the case of GF(p**n) with p being prime. */ /* Initialize the Galois field tables */ GaloisTables* CreateGaloisTables(int32_t gf_generator) { int32_t b,log; GaloisTables *gt = (GaloisTables *)calloc(1, sizeof(GaloisTables)); /* Allocate the tables. The encoder uses a special version of alpha_to which has the mod_fieldmax() folded into the table. */ gt->gfGenerator = gf_generator; gt->indexOf = (int32_t *)calloc(GF_FIELDSIZE, sizeof(int32_t)); gt->alphaTo = (int32_t *)calloc(GF_FIELDSIZE, sizeof(int32_t)); gt->encAlphaTo = (int32_t *)calloc(2*GF_FIELDSIZE, sizeof(int32_t)); /* create the log/ilog values */ for(b=1, log=0; logindexOf[b] = log; gt->alphaTo[log] = b; b = b << 1; if(b & GF_FIELDSIZE) b = b ^ gf_generator; } /* we're even closed using infinity (makes things easier) */ gt->indexOf[0] = GF_ALPHA0; /* log(0) = inf */ gt->alphaTo[GF_ALPHA0] = 0; /* and the other way around */ for(b=0; b<2*GF_FIELDSIZE; b++) gt->encAlphaTo[b] = gt->alphaTo[mod_fieldmax(b)]; return gt; } void FreeGaloisTables(GaloisTables *gt) { if(gt->indexOf) free(gt->indexOf); if(gt->alphaTo) free(gt->alphaTo); if(gt->encAlphaTo) free(gt->encAlphaTo); free(gt); } /*** *** Create the the Reed-Solomon generator polynomial *** and some auxiliary data structures. */ ReedSolomonTables *CreateReedSolomonTables(GaloisTables *gt, int32_t first_consecutive_root, int32_t prim_elem, int nroots_in) { int32_t i,j,root; ReedSolomonTables *rt = (ReedSolomonTables *) calloc(1, sizeof(ReedSolomonTables)); rt->gfTables = gt; rt->fcr = first_consecutive_root; rt->primElem = prim_elem; rt->nroots = nroots_in; rt->ndata = GF_FIELDMAX - rt->nroots; rt->gpoly = (int32_t *)calloc((rt->nroots+1), sizeof(int32_t)); /* Create the RS code generator polynomial */ rt->gpoly[0] = 1; for(i=0, root=first_consecutive_root*prim_elem; inroots; i++, root+=prim_elem) { rt->gpoly[i+1] = 1; /* Multiply gpoly by alpha**(root+x) */ for(j=i; j>0; j--) { if(rt->gpoly[j] != 0) rt->gpoly[j] = rt->gpoly[j-1] ^ gt->alphaTo[mod_fieldmax(gt->indexOf[rt->gpoly[j]] + root)]; else rt->gpoly[j] = rt->gpoly[j-1]; } rt->gpoly[0] = gt->alphaTo[mod_fieldmax(gt->indexOf[rt->gpoly[0]] + root)]; } /* Store the polynomials index for faster encoding */ for(i=0; i<=rt->nroots; i++) rt->gpoly[i] = gt->indexOf[rt->gpoly[i]]; return rt; } void FreeReedSolomonTables(ReedSolomonTables *rt) { if(rt->gpoly) free(rt->gpoly); free(rt); }