/******************************************************************** * * * THIS FILE IS PART OF THE OggVorbis 'TREMOR' CODEC SOURCE CODE. * * * * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS * * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE * * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. * * * * THE OggVorbis 'TREMOR' SOURCE CODE IS (C) COPYRIGHT 1994-2002 * * BY THE Xiph.Org FOUNDATION http://www.xiph.org/ * * * ******************************************************************** function: basic shared codebook operations ********************************************************************/ #include #include #include #include "ogg.h" #include "misc.h" #include "ivorbiscodec.h" #include "codebook.h" /**** pack/unpack helpers ******************************************/ int _ilog(unsigned int v){ int ret=0; while(v){ ret++; v>>=1; } return(ret); } /* 32 bit float (not IEEE; nonnormalized mantissa + biased exponent) : neeeeeee eeemmmmm mmmmmmmm mmmmmmmm Why not IEEE? It's just not that important here. */ #define VQ_FEXP 10 #define VQ_FMAN 21 #define VQ_FEXP_BIAS 768 /* bias toward values smaller than 1. */ static int32_t _float32_unpack(long val,int *point){ long mant=val&0x1fffff; int sign=val&0x80000000; long exp =(val&0x7fe00000L)>>VQ_FMAN; exp-=(VQ_FMAN-1)+VQ_FEXP_BIAS; if(mant){ while(!(mant&0x40000000)){ mant<<=1; exp-=1; } if(sign)mant= -mant; }else{ sign=0; exp=-9999; } *point=exp; return mant; } /* given a list of word lengths, generate a list of codewords. Works for length ordered or unordered, always assigns the lowest valued codewords first. Extended to handle unused entries (length 0) */ uint32_t *_make_words(long *l,long n,long sparsecount){ long i,j,count=0; uint32_t marker[33]; uint32_t *r=(uint32_t *)malloc((sparsecount?sparsecount:n)*sizeof(*r)); memset(marker,0,sizeof(marker)); for(i=0;i0){ uint32_t entry=marker[length]; /* when we claim a node for an entry, we also claim the nodes below it (pruning off the imagined tree that may have dangled from it) as well as blocking the use of any nodes directly above for leaves */ /* update ourself */ if(length<32 && (entry>>length)) { /* error condition; the lengths must specify an overpopulated tree */ free(r); return(NULL); } r[count++]=entry; /* Look to see if the next shorter marker points to the node above. if so, update it and repeat. */ { for(j=length;j>0;j--){ if(marker[j]&1){ /* have to jump branches */ if(j==1) marker[1]++; else marker[j]=marker[j-1]<<1; break; /* invariant says next upper marker would already have been moved if it was on the same path */ } marker[j]++; } } /* prune the tree; the implicit invariant says all the longer markers were dangling from our just-taken node. Dangle them from our *new* node. */ for(j=length+1;j<33;j++) if((marker[j]>>1) == entry){ entry=marker[j]; marker[j]=marker[j-1]<<1; }else break; }else if(sparsecount==0)count++; } /* sanity check the huffman tree; an underpopulated tree must be rejected. The only exception is the one-node pseudo-nil tree, which appears to be underpopulated because the tree doesn't really exist; there's only one possible 'codeword' or zero bits, but the above tree-gen code doesn't mark that. */ if(sparsecount != 1) { for(i=1;i<33;i++) if(marker[i] & (0xffffffffUL>>(32-i))) { free(r); return(NULL); } } /* bitreverse the words because our bitwise packer/unpacker is LSb endian */ for(i=0,count=0;i>j)&1; } if(sparsecount){ if(l[i]) r[count++]=temp; }else r[count++]=temp; } return(r); } /* there might be a straightforward one-line way to do the below that's portable and totally safe against roundoff, but I haven't thought of it. Therefore, we opt on the side of caution */ long _book_maptype1_quantvals(const static_codebook *b){ /* get us a starting hint, we'll polish it below */ int bits=_ilog(b->entries); int vals=b->entries>>((bits-1)*(b->dim-1)/b->dim); for(;;) { long acc=1; long acc1=1; int i; for(i=0;idim;i++){ acc*=vals; acc1*=vals+1; } if(acc<=b->entries && acc1>b->entries) return(vals); else { if(acc>b->entries) vals--; else vals++; } } } /* different than what _book_unquantize does for mainline: we repack the book in a fixed point format that shares the same binary point. Upon first use, we can shift point if needed */ /* we need to deal with two map types: in map type 1, the values are generated algorithmically (each column of the vector counts through the values in the quant vector). in map type 2, all the values came in in an explicit list. Both value lists must be unpacked */ int32_t *_book_unquantize(const static_codebook *b,int n,int *sparsemap, int *maxpoint) { long j,k,count=0; if(b->maptype==1 || b->maptype==2) { int quantvals; int minpoint,delpoint; int32_t mindel=_float32_unpack(b->q_min,&minpoint); int32_t delta=_float32_unpack(b->q_delta,&delpoint); int32_t *r=(int32_t *)calloc(n*b->dim,sizeof(*r)); int *rp=(int *)calloc(n*b->dim,sizeof(*rp)); *maxpoint=minpoint; /* maptype 1 and 2 both use a quantized value vector, but different sizes */ switch(b->maptype){ case 1: /* most of the time, entries%dimensions == 0, but we need to be well defined. We define that the possible vales at each scalar is values == entries/dim. If entries%dim != 0, we'll have 'too few' values (values*dimentries;j++){ if((sparsemap && b->lengthlist[j]) || !sparsemap){ int32_t last=0; int lastpoint=0; int indexdiv=1; for(k=0;kdim;k++){ int index= (j/indexdiv)%quantvals; int point=0; int val=VFLOAT_MULTI(delta,delpoint, abs(b->quantlist[index]),&point); val=VFLOAT_ADD(mindel,minpoint,val,point,&point); val=VFLOAT_ADD(last,lastpoint,val,point,&point); if(b->q_sequencep){ last=val; lastpoint=point; } if(sparsemap){ r[sparsemap[count]*b->dim+k]=val; rp[sparsemap[count]*b->dim+k]=point; }else{ r[count*b->dim+k]=val; rp[count*b->dim+k]=point; } if(*maxpointentries;j++){ if((sparsemap && b->lengthlist[j]) || !sparsemap){ int32_t last=0; int lastpoint=0; for(k=0;kdim;k++){ int point=0; int val=VFLOAT_MULTI(delta,delpoint, abs(b->quantlist[j*b->dim+k]),&point); val=VFLOAT_ADD(mindel,minpoint,val,point,&point); val=VFLOAT_ADD(last,lastpoint,val,point,&point); if(b->q_sequencep){ last=val; lastpoint=point; } if(sparsemap){ r[sparsemap[count]*b->dim+k]=val; rp[sparsemap[count]*b->dim+k]=point; }else{ r[count*b->dim+k]=val; rp[count*b->dim+k]=point; } if(*maxpointdim;j++) if(rp[j]<*maxpoint) r[j]>>=*maxpoint-rp[j]; free(rp); return(r); } return(NULL); } void vorbis_staticbook_destroy(static_codebook *b) { if(b->quantlist) free(b->quantlist); if(b->lengthlist) free(b->lengthlist); memset(b,0,sizeof(*b)); free(b); } void vorbis_book_clear(codebook *b){ /* static book is not cleared; we're likely called on the lookup and the static codebook belongs to the info struct */ if(b->valuelist) free(b->valuelist); if(b->codelist) free(b->codelist); if(b->dec_index) free(b->dec_index); if(b->dec_codelengths) free(b->dec_codelengths); if(b->dec_firsttable) free(b->dec_firsttable); memset(b,0,sizeof(*b)); } static uint32_t bitreverse(uint32_t x){ x= ((x>>16)&0x0000ffffUL) | ((x<<16)&0xffff0000UL); x= ((x>> 8)&0x00ff00ffUL) | ((x<< 8)&0xff00ff00UL); x= ((x>> 4)&0x0f0f0f0fUL) | ((x<< 4)&0xf0f0f0f0UL); x= ((x>> 2)&0x33333333UL) | ((x<< 2)&0xccccccccUL); return((x>> 1)&0x55555555UL) | ((x<< 1)&0xaaaaaaaaUL); } static int sort32a(const void *a,const void *b){ return (**(uint32_t **)a>**(uint32_t **)b)- (**(uint32_t **)a<**(uint32_t **)b); } /* decode codebook arrangement is more heavily optimized than encode */ int vorbis_book_init_decode(codebook *c,const static_codebook *s){ int i,j,n=0,tabn; int *sortindex; memset(c,0,sizeof(*c)); /* count actually used entries */ for(i=0;ientries;i++) if(s->lengthlist[i]>0) n++; c->entries=s->entries; c->used_entries=n; c->dim=s->dim; if(n>0){ /* two different remappings go on here. First, we collapse the likely sparse codebook down only to actually represented values/words. This collapsing needs to be indexed as map-valueless books are used to encode original entry positions as integers. Second, we reorder all vectors, including the entry index above, by sorted bitreversed codeword to allow treeless decode. */ /* perform sort */ uint32_t *codes=_make_words(s->lengthlist,s->entries,c->used_entries); uint32_t **codep=(uint32_t **)alloca(sizeof(*codep)*n); if(codes==NULL)goto err_out; for(i=0;icodelist=(uint32_t *)malloc(n*sizeof(*c->codelist)); /* the index is a reverse index */ for(i=0;icodelist[sortindex[i]]=codes[i]; free(codes); c->valuelist=_book_unquantize(s,n,sortindex,&c->binarypoint); c->dec_index=(int *)malloc(n*sizeof(*c->dec_index)); for(n=0,i=0;ientries;i++) if(s->lengthlist[i]>0) c->dec_index[sortindex[n++]]=i; c->dec_codelengths=(char *)malloc(n*sizeof(*c->dec_codelengths)); for(n=0,i=0;ientries;i++) if(s->lengthlist[i]>0) c->dec_codelengths[sortindex[n++]]=s->lengthlist[i]; c->dec_firsttablen=_ilog(c->used_entries)-4; /* this is magic */ if(c->dec_firsttablen<5)c->dec_firsttablen=5; if(c->dec_firsttablen>8)c->dec_firsttablen=8; tabn=1<dec_firsttablen; c->dec_firsttable=(uint32_t *)calloc(tabn,sizeof(*c->dec_firsttable)); c->dec_maxlength=0; for(i=0;idec_maxlengthdec_codelengths[i]) c->dec_maxlength=c->dec_codelengths[i]; if(c->dec_codelengths[i]<=c->dec_firsttablen){ uint32_t orig=bitreverse(c->codelist[i]); for(j=0;j<(1<<(c->dec_firsttablen-c->dec_codelengths[i]));j++) c->dec_firsttable[orig|(j<dec_codelengths[i])]=i+1; } } /* now fill in 'unused' entries in the firsttable with hi/lo search hints for the non-direct-hits */ { uint32_t mask=0xfffffffeUL<<(31-c->dec_firsttablen); long lo=0,hi=0; for(i=0;idec_firsttablen); if(c->dec_firsttable[bitreverse(word)]==0){ while((lo+1)codelist[lo+1]<=word)lo++; while( hi=(c->codelist[hi]&mask))hi++; /* we only actually have 15 bits per hint to play with here. In order to overflow gracefully (nothing breaks, efficiency just drops), encode as the difference from the extremes. */ { unsigned long loval=lo; unsigned long hival=n-hi; if(loval>0x7fff)loval=0x7fff; if(hival>0x7fff)hival=0x7fff; c->dec_firsttable[bitreverse(word)]= 0x80000000UL | (loval<<15) | hival; } } } } } return(0); err_out: vorbis_book_clear(c); return(-1); }