/* Copyright (C) 2013-2016, The Regents of The University of Michigan. All rights reserved. This software was developed in the APRIL Robotics Lab under the direction of Edwin Olson, ebolson@umich.edu. This software may be available under alternative licensing terms; contact the address above. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the Regents of The University of Michigan. */ #include #include #include "common/matd.h" #include "common/zarray.h" #include "common/homography.h" #include "common/math_util.h" // correspondences is a list of float[4]s, consisting of the points x // and y concatenated. We will compute a homography such that y = Hx matd_t *homography_compute(zarray_t *correspondences, int flags) { // compute centroids of both sets of points (yields a better // conditioned information matrix) double x_cx = 0, x_cy = 0; double y_cx = 0, y_cy = 0; for (int i = 0; i < zarray_size(correspondences); i++) { float *c; zarray_get_volatile(correspondences, i, &c); x_cx += c[0]; x_cy += c[1]; y_cx += c[2]; y_cy += c[3]; } int sz = zarray_size(correspondences); x_cx /= sz; x_cy /= sz; y_cx /= sz; y_cy /= sz; // NB We don't normalize scale; it seems implausible that it could // possibly make any difference given the dynamic range of IEEE // doubles. matd_t *A = matd_create(9,9); for (int i = 0; i < zarray_size(correspondences); i++) { float *c; zarray_get_volatile(correspondences, i, &c); // (below world is "x", and image is "y") double worldx = c[0] - x_cx; double worldy = c[1] - x_cy; double imagex = c[2] - y_cx; double imagey = c[3] - y_cy; double a03 = -worldx; double a04 = -worldy; double a05 = -1; double a06 = worldx*imagey; double a07 = worldy*imagey; double a08 = imagey; MATD_EL(A, 3, 3) += a03*a03; MATD_EL(A, 3, 4) += a03*a04; MATD_EL(A, 3, 5) += a03*a05; MATD_EL(A, 3, 6) += a03*a06; MATD_EL(A, 3, 7) += a03*a07; MATD_EL(A, 3, 8) += a03*a08; MATD_EL(A, 4, 4) += a04*a04; MATD_EL(A, 4, 5) += a04*a05; MATD_EL(A, 4, 6) += a04*a06; MATD_EL(A, 4, 7) += a04*a07; MATD_EL(A, 4, 8) += a04*a08; MATD_EL(A, 5, 5) += a05*a05; MATD_EL(A, 5, 6) += a05*a06; MATD_EL(A, 5, 7) += a05*a07; MATD_EL(A, 5, 8) += a05*a08; MATD_EL(A, 6, 6) += a06*a06; MATD_EL(A, 6, 7) += a06*a07; MATD_EL(A, 6, 8) += a06*a08; MATD_EL(A, 7, 7) += a07*a07; MATD_EL(A, 7, 8) += a07*a08; MATD_EL(A, 8, 8) += a08*a08; double a10 = worldx; double a11 = worldy; double a12 = 1; double a16 = -worldx*imagex; double a17 = -worldy*imagex; double a18 = -imagex; MATD_EL(A, 0, 0) += a10*a10; MATD_EL(A, 0, 1) += a10*a11; MATD_EL(A, 0, 2) += a10*a12; MATD_EL(A, 0, 6) += a10*a16; MATD_EL(A, 0, 7) += a10*a17; MATD_EL(A, 0, 8) += a10*a18; MATD_EL(A, 1, 1) += a11*a11; MATD_EL(A, 1, 2) += a11*a12; MATD_EL(A, 1, 6) += a11*a16; MATD_EL(A, 1, 7) += a11*a17; MATD_EL(A, 1, 8) += a11*a18; MATD_EL(A, 2, 2) += a12*a12; MATD_EL(A, 2, 6) += a12*a16; MATD_EL(A, 2, 7) += a12*a17; MATD_EL(A, 2, 8) += a12*a18; MATD_EL(A, 6, 6) += a16*a16; MATD_EL(A, 6, 7) += a16*a17; MATD_EL(A, 6, 8) += a16*a18; MATD_EL(A, 7, 7) += a17*a17; MATD_EL(A, 7, 8) += a17*a18; MATD_EL(A, 8, 8) += a18*a18; double a20 = -worldx*imagey; double a21 = -worldy*imagey; double a22 = -imagey; double a23 = worldx*imagex; double a24 = worldy*imagex; double a25 = imagex; MATD_EL(A, 0, 0) += a20*a20; MATD_EL(A, 0, 1) += a20*a21; MATD_EL(A, 0, 2) += a20*a22; MATD_EL(A, 0, 3) += a20*a23; MATD_EL(A, 0, 4) += a20*a24; MATD_EL(A, 0, 5) += a20*a25; MATD_EL(A, 1, 1) += a21*a21; MATD_EL(A, 1, 2) += a21*a22; MATD_EL(A, 1, 3) += a21*a23; MATD_EL(A, 1, 4) += a21*a24; MATD_EL(A, 1, 5) += a21*a25; MATD_EL(A, 2, 2) += a22*a22; MATD_EL(A, 2, 3) += a22*a23; MATD_EL(A, 2, 4) += a22*a24; MATD_EL(A, 2, 5) += a22*a25; MATD_EL(A, 3, 3) += a23*a23; MATD_EL(A, 3, 4) += a23*a24; MATD_EL(A, 3, 5) += a23*a25; MATD_EL(A, 4, 4) += a24*a24; MATD_EL(A, 4, 5) += a24*a25; MATD_EL(A, 5, 5) += a25*a25; } // make symmetric for (int i = 0; i < 9; i++) for (int j = i+1; j < 9; j++) MATD_EL(A, j, i) = MATD_EL(A, i, j); matd_t *H = matd_create(3,3); if (flags & HOMOGRAPHY_COMPUTE_FLAG_INVERSE) { // compute singular vector by (carefully) inverting the rank-deficient matrix. if (1) { matd_t *Ainv = matd_inverse(A); double scale = 0; for (int i = 0; i < 9; i++) scale += sq(MATD_EL(Ainv, i, 0)); scale = sqrt(scale); for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) MATD_EL(H, i, j) = MATD_EL(Ainv, 3*i+j, 0) / scale; matd_destroy(Ainv); } else { matd_t *b = matd_create_data(9, 1, (double[]) { 1, 0, 0, 0, 0, 0, 0, 0, 0 }); matd_t *Ainv = NULL; if (0) { matd_plu_t *lu = matd_plu(A); Ainv = matd_plu_solve(lu, b); matd_plu_destroy(lu); } else { matd_chol_t *chol = matd_chol(A); Ainv = matd_chol_solve(chol, b); matd_chol_destroy(chol); } double scale = 0; for (int i = 0; i < 9; i++) scale += sq(MATD_EL(Ainv, i, 0)); scale = sqrt(scale); for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) MATD_EL(H, i, j) = MATD_EL(Ainv, 3*i+j, 0) / scale; matd_destroy(b); matd_destroy(Ainv); } } else { // compute singular vector using SVD. A bit slower, but more accurate. matd_svd_t svd = matd_svd_flags(A, MATD_SVD_NO_WARNINGS); for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) MATD_EL(H, i, j) = MATD_EL(svd.U, 3*i+j, 8); matd_destroy(svd.U); matd_destroy(svd.S); matd_destroy(svd.V); } matd_t *Tx = matd_identity(3); MATD_EL(Tx,0,2) = -x_cx; MATD_EL(Tx,1,2) = -x_cy; matd_t *Ty = matd_identity(3); MATD_EL(Ty,0,2) = y_cx; MATD_EL(Ty,1,2) = y_cy; matd_t *H2 = matd_op("M*M*M", Ty, H, Tx); matd_destroy(A); matd_destroy(Tx); matd_destroy(Ty); matd_destroy(H); return H2; } // assuming that the projection matrix is: // [ fx 0 cx 0 ] // [ 0 fy cy 0 ] // [ 0 0 1 0 ] // // And that the homography is equal to the projection matrix times the // model matrix, recover the model matrix (which is returned). Note // that the third column of the model matrix is missing in the // expresison below, reflecting the fact that the homography assumes // all points are at z=0 (i.e., planar) and that the element of z is // thus omitted. (3x1 instead of 4x1). // // [ fx 0 cx 0 ] [ R00 R01 TX ] [ H00 H01 H02 ] // [ 0 fy cy 0 ] [ R10 R11 TY ] = [ H10 H11 H12 ] // [ 0 0 1 0 ] [ R20 R21 TZ ] = [ H20 H21 H22 ] // [ 0 0 1 ] // // fx*R00 + cx*R20 = H00 (note, H only known up to scale; some additional adjustments required; see code.) // fx*R01 + cx*R21 = H01 // fx*TX + cx*TZ = H02 // fy*R10 + cy*R20 = H10 // fy*R11 + cy*R21 = H11 // fy*TY + cy*TZ = H12 // R20 = H20 // R21 = H21 // TZ = H22 matd_t *homography_to_pose(const matd_t *H, double fx, double fy, double cx, double cy) { // Note that every variable that we compute is proportional to the scale factor of H. double R20 = MATD_EL(H, 2, 0); double R21 = MATD_EL(H, 2, 1); double TZ = MATD_EL(H, 2, 2); double R00 = (MATD_EL(H, 0, 0) - cx*R20) / fx; double R01 = (MATD_EL(H, 0, 1) - cx*R21) / fx; double TX = (MATD_EL(H, 0, 2) - cx*TZ) / fx; double R10 = (MATD_EL(H, 1, 0) - cy*R20) / fy; double R11 = (MATD_EL(H, 1, 1) - cy*R21) / fy; double TY = (MATD_EL(H, 1, 2) - cy*TZ) / fy; // compute the scale by requiring that the rotation columns are unit length // (Use geometric average of the two length vectors we have) double length1 = sqrtf(R00*R00 + R10*R10 + R20*R20); double length2 = sqrtf(R01*R01 + R11*R11 + R21*R21); double s = 1.0 / sqrtf(length1 * length2); // get sign of S by requiring the tag to be in front the camera; // we assume camera looks in the -Z direction. if (TZ > 0) s *= -1; R20 *= s; R21 *= s; TZ *= s; R00 *= s; R01 *= s; TX *= s; R10 *= s; R11 *= s; TY *= s; // now recover [R02 R12 R22] by noting that it is the cross product of the other two columns. double R02 = R10*R21 - R20*R11; double R12 = R20*R01 - R00*R21; double R22 = R00*R11 - R10*R01; // Improve rotation matrix by applying polar decomposition. if (1) { // do polar decomposition. This makes the rotation matrix // "proper", but probably increases the reprojection error. An // iterative alignment step would be superior. matd_t *R = matd_create_data(3, 3, (double[]) { R00, R01, R02, R10, R11, R12, R20, R21, R22 }); matd_svd_t svd = matd_svd(R); matd_destroy(R); R = matd_op("M*M'", svd.U, svd.V); matd_destroy(svd.U); matd_destroy(svd.S); matd_destroy(svd.V); R00 = MATD_EL(R, 0, 0); R01 = MATD_EL(R, 0, 1); R02 = MATD_EL(R, 0, 2); R10 = MATD_EL(R, 1, 0); R11 = MATD_EL(R, 1, 1); R12 = MATD_EL(R, 1, 2); R20 = MATD_EL(R, 2, 0); R21 = MATD_EL(R, 2, 1); R22 = MATD_EL(R, 2, 2); matd_destroy(R); } return matd_create_data(4, 4, (double[]) { R00, R01, R02, TX, R10, R11, R12, TY, R20, R21, R22, TZ, 0, 0, 0, 1 }); } // Similar to above // Recover the model view matrix assuming that the projection matrix is: // // [ F 0 A 0 ] (see glFrustrum) // [ 0 G B 0 ] // [ 0 0 C D ] // [ 0 0 -1 0 ] matd_t *homography_to_model_view(const matd_t *H, double F, double G, double A, double B, double C, double D) { // Note that every variable that we compute is proportional to the scale factor of H. double R20 = -MATD_EL(H, 2, 0); double R21 = -MATD_EL(H, 2, 1); double TZ = -MATD_EL(H, 2, 2); double R00 = (MATD_EL(H, 0, 0) - A*R20) / F; double R01 = (MATD_EL(H, 0, 1) - A*R21) / F; double TX = (MATD_EL(H, 0, 2) - A*TZ) / F; double R10 = (MATD_EL(H, 1, 0) - B*R20) / G; double R11 = (MATD_EL(H, 1, 1) - B*R21) / G; double TY = (MATD_EL(H, 1, 2) - B*TZ) / G; // compute the scale by requiring that the rotation columns are unit length // (Use geometric average of the two length vectors we have) double length1 = sqrtf(R00*R00 + R10*R10 + R20*R20); double length2 = sqrtf(R01*R01 + R11*R11 + R21*R21); double s = 1.0 / sqrtf(length1 * length2); // get sign of S by requiring the tag to be in front of the camera // (which is Z < 0) for our conventions. if (TZ > 0) s *= -1; R20 *= s; R21 *= s; TZ *= s; R00 *= s; R01 *= s; TX *= s; R10 *= s; R11 *= s; TY *= s; // now recover [R02 R12 R22] by noting that it is the cross product of the other two columns. double R02 = R10*R21 - R20*R11; double R12 = R20*R01 - R00*R21; double R22 = R00*R11 - R10*R01; // TODO XXX: Improve rotation matrix by applying polar decomposition. return matd_create_data(4, 4, (double[]) { R00, R01, R02, TX, R10, R11, R12, TY, R20, R21, R22, TZ, 0, 0, 0, 1 }); } // Only uses the upper 3x3 matrix. /* static void matrix_to_quat(const matd_t *R, double q[4]) { // see: "from quaternion to matrix and back" // trace: get the same result if R is 4x4 or 3x3: double T = MATD_EL(R, 0, 0) + MATD_EL(R, 1, 1) + MATD_EL(R, 2, 2) + 1; double S = 0; double m0 = MATD_EL(R, 0, 0); double m1 = MATD_EL(R, 1, 0); double m2 = MATD_EL(R, 2, 0); double m4 = MATD_EL(R, 0, 1); double m5 = MATD_EL(R, 1, 1); double m6 = MATD_EL(R, 2, 1); double m8 = MATD_EL(R, 0, 2); double m9 = MATD_EL(R, 1, 2); double m10 = MATD_EL(R, 2, 2); if (T > 0.0000001) { S = sqrtf(T) * 2; q[1] = -( m9 - m6 ) / S; q[2] = -( m2 - m8 ) / S; q[3] = -( m4 - m1 ) / S; q[0] = 0.25 * S; } else if ( m0 > m5 && m0 > m10 ) { // Column 0: S = sqrtf( 1.0 + m0 - m5 - m10 ) * 2; q[1] = -0.25 * S; q[2] = -(m4 + m1 ) / S; q[3] = -(m2 + m8 ) / S; q[0] = (m9 - m6 ) / S; } else if ( m5 > m10 ) { // Column 1: S = sqrtf( 1.0 + m5 - m0 - m10 ) * 2; q[1] = -(m4 + m1 ) / S; q[2] = -0.25 * S; q[3] = -(m9 + m6 ) / S; q[0] = (m2 - m8 ) / S; } else { // Column 2: S = sqrtf( 1.0 + m10 - m0 - m5 ) * 2; q[1] = -(m2 + m8 ) / S; q[2] = -(m9 + m6 ) / S; q[3] = -0.25 * S; q[0] = (m4 - m1 ) / S; } double mag2 = 0; for (int i = 0; i < 4; i++) mag2 += q[i]*q[i]; double norm = 1.0 / sqrtf(mag2); for (int i = 0; i < 4; i++) q[i] *= norm; } */ // overwrites upper 3x3 area of matrix M. Doesn't touch any other elements of M. void quat_to_matrix(const double q[4], matd_t *M) { double w = q[0], x = q[1], y = q[2], z = q[3]; MATD_EL(M, 0, 0) = w*w + x*x - y*y - z*z; MATD_EL(M, 0, 1) = 2*x*y - 2*w*z; MATD_EL(M, 0, 2) = 2*x*z + 2*w*y; MATD_EL(M, 1, 0) = 2*x*y + 2*w*z; MATD_EL(M, 1, 1) = w*w - x*x + y*y - z*z; MATD_EL(M, 1, 2) = 2*y*z - 2*w*x; MATD_EL(M, 2, 0) = 2*x*z - 2*w*y; MATD_EL(M, 2, 1) = 2*y*z + 2*w*x; MATD_EL(M, 2, 2) = w*w - x*x - y*y + z*z; }