/* Copyright (C) 2016 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb.h" void acb_bernoulli_poly_ui(acb_t res, ulong n, const acb_t x, slong prec) { acb_t s, x2; arb_t t, c; ulong k; if (n == 0) { acb_one(res); return; } if (n == 1) { acb_mul_2exp_si(res, x, 1); acb_sub_ui(res, res, 1, prec); acb_mul_2exp_si(res, res, -1); return; } if (acb_is_real(x)) { arb_bernoulli_poly_ui(acb_realref(res), n, acb_realref(x), prec); arb_zero(acb_imagref(res)); return; } /* assuming small n simplifies the code that follows */ if (n >> (FLINT_BITS / 2) || !acb_is_finite(x)) { acb_indeterminate(res); return; } acb_init(s); acb_init(x2); arb_init(t); arb_init(c); acb_mul(x2, x, x, prec); /* s = x^2 - x n / 2 */ acb_mul_ui(s, x, n, prec); acb_mul_2exp_si(s, s, -1); acb_sub(s, x2, s, prec); /* c = n (n-1) / 2; s = s + c / 6 */ arb_set_ui(c, n * (n - 1)); arb_mul_2exp_si(c, c, -1); arb_div_ui(t, c, 6, prec); acb_add_arb(s, s, t, prec); for (k = 4; k <= n; k += 2) { /* c = binomial(n,k) */ arb_mul_ui(c, c, (n + 1 - k) * (n + 2 - k), prec); arb_div_ui(c, c, k * (k - 1), prec); /* s = s x^2 + b_k c */ acb_mul(s, s, x2, prec); arb_bernoulli_ui(t, k, prec); arb_mul(t, t, c, prec); acb_add_arb(s, s, t, prec); } if (n >= 3 && n % 2) acb_mul(s, s, x, prec); acb_swap(res, s); acb_clear(s); acb_clear(x2); arb_clear(t); arb_clear(c); }