/*
Copyright (C) 2018 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See .
*/
#include "acb.h"
/* We need uint64_t instead of mp_limb_t on 32-bit systems for
safe summation of 30-bit error bounds. */
#include
/* The following macros are found in FLINT's longlong.h, but
the release version is out of date. */
/* x86 : 64 bit */
#if (GMP_LIMB_BITS == 64 && defined (__amd64__))
#define add_sssaaaaaa2(sh, sm, sl, ah, am, al, bh, bm, bl) \
__asm__ ("addq %8,%q2\n\tadcq %6,%q1\n\tadcq %4,%q0" \
: "=r" (sh), "=&r" (sm), "=&r" (sl) \
: "0" ((mp_limb_t)(ah)), "rme" ((mp_limb_t)(bh)), \
"1" ((mp_limb_t)(am)), "rme" ((mp_limb_t)(bm)), \
"2" ((mp_limb_t)(al)), "rme" ((mp_limb_t)(bl))) \
#define sub_dddmmmsss2(dh, dm, dl, mh, mm, ml, sh, sm, sl) \
__asm__ ("subq %8,%q2\n\tsbbq %6,%q1\n\tsbbq %4,%q0" \
: "=r" (dh), "=&r" (dm), "=&r" (dl) \
: "0" ((mp_limb_t)(mh)), "rme" ((mp_limb_t)(sh)), \
"1" ((mp_limb_t)(mm)), "rme" ((mp_limb_t)(sm)), \
"2" ((mp_limb_t)(ml)), "rme" ((mp_limb_t)(sl))) \
#endif /* x86_64 */
/* x86 : 32 bit */
#if (GMP_LIMB_BITS == 32 && (defined (__i386__) \
|| defined (__i486__) || defined(__amd64__)))
#define add_sssaaaaaa2(sh, sm, sl, ah, am, al, bh, bm, bl) \
__asm__ ("addl %8,%k2\n\tadcl %6,%k1\n\tadcl %4,%k0" \
: "=r" (sh), "=r" (sm), "=&r" (sl) \
: "0" ((mp_limb_t)(ah)), "g" ((mp_limb_t)(bh)), \
"1" ((mp_limb_t)(am)), "g" ((mp_limb_t)(bm)), \
"2" ((mp_limb_t)(al)), "g" ((mp_limb_t)(bl))) \
#define sub_dddmmmsss2(dh, dm, dl, mh, mm, ml, sh, sm, sl) \
__asm__ ("subl %8,%k2\n\tsbbl %6,%k1\n\tsbbl %4,%k0" \
: "=r" (dh), "=r" (dm), "=&r" (dl) \
: "0" ((mp_limb_t)(mh)), "g" ((mp_limb_t)(sh)), \
"1" ((mp_limb_t)(mm)), "g" ((mp_limb_t)(sm)), \
"2" ((mp_limb_t)(ml)), "g" ((mp_limb_t)(sl))) \
#endif /* x86 */
#if !defined(add_sssaaaaaa2)
#define add_sssaaaaaa2(sh, sm, sl, ah, am, al, bh, bm, bl) \
do { \
mp_limb_t __t, __u; \
add_ssaaaa(__t, sl, (mp_limb_t) 0, al, (mp_limb_t) 0, bl); \
add_ssaaaa(__u, sm, (mp_limb_t) 0, am, (mp_limb_t) 0, bm); \
add_ssaaaa(sh, sm, ah + bh, sm, __u, __t); \
} while (0)
#define sub_dddmmmsss2(dh, dm, dl, mh, mm, ml, sh, sm, sl) \
do { \
mp_limb_t __t, __u; \
sub_ddmmss(__t, dl, (mp_limb_t) 0, ml, (mp_limb_t) 0, sl); \
sub_ddmmss(__u, dm, (mp_limb_t) 0, mm, (mp_limb_t) 0, sm); \
sub_ddmmss(dh, dm, mh - sh, dm, -__u, -__t); \
} while (0)
#endif
/* Add ((a * b) / 2^MAG_BITS) * 2^exp into srad*2^srad_exp.
Assumes that srad_exp >= exp and that overflow cannot occur. */
#define RAD_ADDMUL(srad, srad_exp, a, b, exp) \
do { \
uint64_t __a, __b; \
slong __shift; \
__a = (a); \
__b = (b); \
__shift = (srad_exp) - (exp); \
if (__shift < MAG_BITS) \
(srad) += (((__a) * (__b)) >> (MAG_BITS + __shift)) + 1; \
else \
(srad) += 1; \
} while (0)
void mag_set_ui_2exp_small(mag_t z, ulong x, slong e);
static void
add_errors(mag_t rad, uint64_t Aerr, slong Aexp, uint64_t Berr, slong Bexp, uint64_t Cerr, slong Cexp)
{
slong shift;
if (Aerr && Berr)
{
if (Aexp >= Bexp)
{
shift = Aexp - Bexp;
if (shift < 64)
Aerr = Aerr + (Berr >> shift) + 1;
else
Aerr = Aerr + 1;
}
else
{
shift = Bexp - Aexp;
if (shift < 64)
Aerr = Berr + (Aerr >> shift) + 1;
else
Aerr = Berr + 1;
Aexp = Bexp;
}
}
else if (Berr)
{
Aerr = Berr;
Aexp = Bexp;
}
if (Aerr && Cerr)
{
if (Aexp >= Cexp)
{
shift = Aexp - Cexp;
if (shift < 64)
Aerr = Aerr + (Cerr >> shift) + 1;
else
Aerr = Aerr + 1;
}
else
{
shift = Cexp - Aexp;
if (shift < 64)
Aerr = Cerr + (Aerr >> shift) + 1;
else
Aerr = Cerr + 1;
Aexp = Cexp;
}
}
else if (Cerr)
{
Aerr = Cerr;
Aexp = Cexp;
}
#if FLINT_BITS == 64
mag_set_ui_2exp_small(rad, Aerr, Aexp - MAG_BITS);
#else
mag_set_d(rad, Aerr * (1.0 + 1e-14));
mag_mul_2exp_si(rad, rad, Aexp - MAG_BITS);
#endif
}
void
_arb_dot_addmul_generic(mp_ptr sum, mp_ptr serr, mp_ptr tmp, mp_size_t sn,
mp_srcptr xptr, mp_size_t xn, mp_srcptr yptr, mp_size_t yn,
int negative, flint_bitcnt_t shift);
void
_arb_dot_add_generic(mp_ptr sum, mp_ptr serr, mp_ptr tmp, mp_size_t sn,
mp_srcptr xptr, mp_size_t xn,
int negative, flint_bitcnt_t shift);
static void
_arb_dot_output(arb_t res, mp_ptr sum, mp_size_t sn, int negative,
uint64_t serr, slong sum_exp, uint64_t srad, slong srad_exp, slong prec)
{
slong exp_fix;
int inexact;
if (sum[sn - 1] >= LIMB_TOP)
{
mpn_neg(sum, sum, sn);
negative ^= 1;
}
exp_fix = 0;
if (sum[sn - 1] == 0)
{
slong sum_exp2;
mp_size_t sn2;
sn2 = sn;
sum_exp2 = sum_exp;
while (sn2 > 0 && sum[sn2 - 1] == 0)
{
sum_exp2 -= FLINT_BITS;
sn2--;
}
if (sn2 == 0)
{
arf_zero(arb_midref(res));
inexact = 0;
}
else
{
inexact = _arf_set_round_mpn(arb_midref(res), &exp_fix, sum, sn2, negative, prec, ARF_RND_DOWN);
_fmpz_set_si_small(ARF_EXPREF(arb_midref(res)), exp_fix + sum_exp2);
}
}
else
{
if (sn == 2) /* unnecessary? */
inexact = _arf_set_round_uiui(arb_midref(res), &exp_fix, sum[1], sum[0], negative, prec, ARF_RND_DOWN);
else
inexact = _arf_set_round_mpn(arb_midref(res), &exp_fix, sum, sn, negative, prec, ARF_RND_DOWN);
_fmpz_set_si_small(ARF_EXPREF(arb_midref(res)), exp_fix + sum_exp);
}
add_errors(arb_radref(res),
inexact << MAG_BITS,
exp_fix + sum_exp - prec,
((uint64_t) serr) << MAG_BITS,
sum_exp - sn * FLINT_BITS,
srad,
srad_exp);
}
/* xxx: don't use surrounding variables */
#define ARB_DOT_ADD(s_sum, s_serr, s_sn, s_sum_exp, s_subtract, xm) \
if (!arf_is_special(xm)) \
{ \
mp_srcptr xptr; \
xexp = ARF_EXP(xm); \
xn = ARF_SIZE(xm); \
xnegative = ARF_SGNBIT(xm); \
shift = s_sum_exp - xexp; \
if (shift >= s_sn * FLINT_BITS) \
{ \
s_serr++; \
} \
else \
{ \
xptr = (xn <= ARF_NOPTR_LIMBS) ? ARF_NOPTR_D(xm) : ARF_PTR_D(xm); \
_arb_dot_add_generic(s_sum, &s_serr, tmp, s_sn, xptr, xn, xnegative ^ s_subtract, shift); \
} \
} \
/* xxx: don't use surrounding variables */
#define ARB_DOT_ADD_RAD(s_srad, s_srad_exp, xr) \
if (!mag_is_special(xr)) \
{ \
xrad = MAG_MAN(xr); \
xrexp = MAG_EXP(xr); \
shift = s_srad_exp - xrexp; \
if (shift < 64) \
s_srad += (xrad >> shift) + 1; \
else \
s_srad++; \
}
static void
_arf_complex_mul_gauss(arf_t e, arf_t f, const arf_t a, const arf_t b,
const arf_t c, const arf_t d)
{
mp_srcptr ap, bp, cp, dp;
int asgn, bsgn, csgn, dsgn;
mp_size_t an, bn, cn, dn;
slong aexp, bexp, cexp, dexp;
fmpz texp, uexp;
fmpz_t za, zb, zc, zd, t, u, v;
slong abot, bbot, cbot, dbot;
ARF_GET_MPN_READONLY(ap, an, a);
asgn = ARF_SGNBIT(a);
aexp = ARF_EXP(a);
ARF_GET_MPN_READONLY(bp, bn, b);
bsgn = ARF_SGNBIT(b);
bexp = ARF_EXP(b);
ARF_GET_MPN_READONLY(cp, cn, c);
csgn = ARF_SGNBIT(c);
cexp = ARF_EXP(c);
ARF_GET_MPN_READONLY(dp, dn, d);
dsgn = ARF_SGNBIT(d);
dexp = ARF_EXP(d);
/* Gauss multiplication
e = ac - bd
f = (a+b)(c+d) - ac - bd */
abot = aexp - an * FLINT_BITS;
bbot = bexp - bn * FLINT_BITS;
cbot = cexp - cn * FLINT_BITS;
dbot = dexp - dn * FLINT_BITS;
texp = FLINT_MIN(abot, bbot);
uexp = FLINT_MIN(cbot, dbot);
fmpz_init(za);
fmpz_init(zb);
fmpz_init(zc);
fmpz_init(zd);
fmpz_init(t);
fmpz_init(u);
fmpz_init(v);
fmpz_lshift_mpn(za, ap, an, asgn, abot - texp);
fmpz_lshift_mpn(zb, bp, bn, bsgn, bbot - texp);
fmpz_lshift_mpn(zc, cp, cn, csgn, cbot - uexp);
fmpz_lshift_mpn(zd, dp, dn, dsgn, dbot - uexp);
fmpz_add(t, za, zb);
fmpz_add(v, zc, zd);
fmpz_mul(u, t, v);
fmpz_mul(t, za, zc);
fmpz_mul(v, zb, zd);
fmpz_sub(u, u, t);
fmpz_sub(u, u, v);
fmpz_sub(t, t, v);
texp += uexp;
arf_set_fmpz_2exp(e, t, &texp);
arf_set_fmpz_2exp(f, u, &texp);
fmpz_clear(za);
fmpz_clear(zb);
fmpz_clear(zc);
fmpz_clear(zd);
fmpz_clear(t);
fmpz_clear(u);
fmpz_clear(v);
}
/* TODO: this could be much lower, but it's currently competing
against mulhigh in the Karatsuba range. */
ARB_DLL slong acb_dot_gauss_dot_cutoff = 128;
#define GAUSS_CUTOFF acb_dot_gauss_dot_cutoff
void
acb_dot(acb_t res, const acb_t initial, int subtract, acb_srcptr x, slong xstep, acb_srcptr y, slong ystep, slong len, slong prec)
{
slong i, j, padding, extend;
slong xexp, yexp, exp;
slong re_nonzero, im_nonzero;
slong re_max_exp, re_min_exp, re_sum_exp;
slong im_max_exp, im_min_exp, im_sum_exp;
slong re_srad_exp, re_max_rad_exp;
slong im_srad_exp, im_max_rad_exp;
slong re_prec, im_prec;
slong xrexp, yrexp;
int xnegative, ynegative;
mp_size_t xn, yn, re_sn, im_sn, alloc;
flint_bitcnt_t shift;
arb_srcptr xi, yi;
arf_srcptr xm, ym;
mag_srcptr xr, yr;
mp_limb_t xtop, ytop;
mp_limb_t xrad, yrad;
mp_limb_t re_serr, im_serr; /* Sum over arithmetic errors */
uint64_t re_srad, im_srad; /* Sum over propagated errors */
mp_ptr tmp, re_sum, im_sum; /* Workspace */
slong xoff, yoff;
char * use_gauss;
ARF_ADD_TMP_DECL;
/* todo: fast fma and fmma (len=2) code */
if (len <= 1)
{
if (initial == NULL)
{
if (len <= 0)
acb_zero(res);
else
{
acb_mul(res, x, y, prec);
if (subtract)
acb_neg(res, res);
}
return;
}
else if (len <= 0)
{
acb_set_round(res, initial, prec);
return;
}
}
/* Number of nonzero midpoint terms in sum. */
re_nonzero = 0;
im_nonzero = 0;
/* Terms are bounded by 2^max_exp (with WORD_MIN = -infty) */
re_max_exp = WORD_MIN;
im_max_exp = WORD_MIN;
/* Propagated error terms are bounded by 2^max_rad_exp */
re_max_rad_exp = WORD_MIN;
im_max_rad_exp = WORD_MIN;
/* Used to reduce the precision. */
re_min_exp = WORD_MAX;
im_min_exp = WORD_MAX;
/* Account for the initial term. */
if (initial != NULL)
{
if (!ARB_IS_LAGOM(acb_realref(initial)) || !ARB_IS_LAGOM(acb_imagref(initial)))
{
acb_dot_simple(res, initial, subtract, x, xstep, y, ystep, len, prec);
return;
}
xm = arb_midref(acb_realref(initial));
xr = arb_radref(acb_realref(initial));
if (!arf_is_special(xm))
{
re_max_exp = ARF_EXP(xm);
re_nonzero++;
if (prec > 2 * FLINT_BITS)
re_min_exp = ARF_EXP(xm) - ARF_SIZE(xm) * FLINT_BITS;
}
if (!mag_is_special(xr))
re_max_rad_exp = MAG_EXP(xr);
xm = arb_midref(acb_imagref(initial));
xr = arb_radref(acb_imagref(initial));
if (!arf_is_special(xm))
{
im_max_exp = ARF_EXP(xm);
im_nonzero++;
if (prec > 2 * FLINT_BITS)
im_min_exp = ARF_EXP(xm) - ARF_SIZE(xm) * FLINT_BITS;
}
if (!mag_is_special(xr))
im_max_rad_exp = MAG_EXP(xr);
}
for (xoff = 0; xoff < 2; xoff++)
{
for (yoff = 0; yoff < 2; yoff++)
{
slong nonzero, max_exp, min_exp, max_rad_exp;
if (xoff == yoff)
{
nonzero = re_nonzero;
max_exp = re_max_exp;
min_exp = re_min_exp;
max_rad_exp = re_max_rad_exp;
}
else
{
nonzero = im_nonzero;
max_exp = im_max_exp;
min_exp = im_min_exp;
max_rad_exp = im_max_rad_exp;
}
/* Determine maximum exponents for the main sum and the radius sum. */
for (i = 0; i < len; i++)
{
xi = ((arb_srcptr) x) + 2 * i * xstep + xoff;
yi = ((arb_srcptr) y) + 2 * i * ystep + yoff;
/* Fallback for huge exponents or non-finite values. */
if (!ARB_IS_LAGOM(xi) || !ARB_IS_LAGOM(yi))
{
acb_dot_simple(res, initial, subtract, x, xstep, y, ystep, len, prec);
return;
}
xm = arb_midref(xi);
ym = arb_midref(yi);
xr = arb_radref(xi);
yr = arb_radref(yi);
/* (xm+xr)(ym+yr) = xm ym + [xr ym + xm yr + xr yr] */
if (!arf_is_special(xm))
{
xexp = ARF_EXP(xm);
if (!arf_is_special(ym))
{
yexp = ARF_EXP(ym);
max_exp = FLINT_MAX(max_exp, xexp + yexp);
nonzero++;
if (prec > 2 * FLINT_BITS)
{
slong bot;
bot = (xexp + yexp) - (ARF_SIZE(xm) + ARF_SIZE(ym)) * FLINT_BITS;
min_exp = FLINT_MIN(min_exp, bot);
}
if (!mag_is_special(xr))
{
xrexp = MAG_EXP(xr);
max_rad_exp = FLINT_MAX(max_rad_exp, yexp + xrexp);
if (!mag_is_special(yr))
{
yrexp = MAG_EXP(yr);
max_rad_exp = FLINT_MAX(max_rad_exp, xexp + yrexp);
max_rad_exp = FLINT_MAX(max_rad_exp, xrexp + yrexp);
}
}
else
{
if (!mag_is_special(yr))
{
yrexp = MAG_EXP(yr);
max_rad_exp = FLINT_MAX(max_rad_exp, xexp + yrexp);
}
}
}
else /* if y = 0, something can happen only if yr != 0 */
{
if (!mag_is_special(yr))
{
yrexp = MAG_EXP(yr);
max_rad_exp = FLINT_MAX(max_rad_exp, xexp + yrexp);
if (!mag_is_special(xr))
{
xrexp = MAG_EXP(xr);
max_rad_exp = FLINT_MAX(max_rad_exp, xrexp + yrexp);
}
}
}
}
else /* if x = 0, something can happen only if xr != 0 */
{
if (!mag_is_special(xr))
{
xrexp = MAG_EXP(xr);
if (!arf_is_special(ym))
{
yexp = ARF_EXP(ym);
max_rad_exp = FLINT_MAX(max_rad_exp, xrexp + yexp);
}
if (!mag_is_special(yr))
{
yrexp = MAG_EXP(yr);
max_rad_exp = FLINT_MAX(max_rad_exp, xrexp + yrexp);
}
}
}
}
if (xoff == yoff)
{
re_nonzero = nonzero;
re_max_exp = max_exp;
re_min_exp = min_exp;
re_max_rad_exp = max_rad_exp;
}
else
{
im_nonzero = nonzero;
im_max_exp = max_exp;
im_min_exp = min_exp;
im_max_rad_exp = max_rad_exp;
}
}
}
re_prec = prec;
im_prec = prec;
if (re_max_exp == WORD_MIN && re_max_rad_exp == WORD_MIN &&
im_max_exp == WORD_MIN && im_max_rad_exp == WORD_MIN)
{
acb_zero(res);
return;
}
/* The midpoint sum is zero. */
if (re_max_exp == WORD_MIN)
{
re_prec = 2;
}
else
{
if (re_max_rad_exp != WORD_MIN)
re_prec = FLINT_MIN(re_prec, re_max_exp - re_max_rad_exp + MAG_BITS);
if (re_min_exp != WORD_MAX)
re_prec = FLINT_MIN(re_prec, re_max_exp - re_min_exp + MAG_BITS);
re_prec = FLINT_MAX(re_prec, 2);
}
if (im_max_exp == WORD_MIN)
{
im_prec = 2;
}
else
{
if (im_max_rad_exp != WORD_MIN)
im_prec = FLINT_MIN(im_prec, im_max_exp - im_max_rad_exp + MAG_BITS);
if (re_min_exp != WORD_MAX)
im_prec = FLINT_MIN(im_prec, im_max_exp - im_min_exp + MAG_BITS);
im_prec = FLINT_MAX(im_prec, 2);
}
extend = FLINT_BIT_COUNT(re_nonzero) + 1;
padding = 4 + FLINT_BIT_COUNT(len);
re_sn = (re_prec + extend + padding + FLINT_BITS - 1) / FLINT_BITS;
re_sn = FLINT_MAX(re_sn, 2);
re_sum_exp = re_max_exp + extend;
extend = FLINT_BIT_COUNT(im_nonzero) + 1;
padding = 4 + FLINT_BIT_COUNT(len);
im_sn = (im_prec + extend + padding + FLINT_BITS - 1) / FLINT_BITS;
im_sn = FLINT_MAX(im_sn, 2);
im_sum_exp = im_max_exp + extend;
/* We need sn + 1 limb for the sum (sn limbs + 1 dummy limb
for carry or borrow that avoids an extra branch). We need
2 * (sn + 2) limbs to store the product of two numbers
with up to (sn + 2) limbs, plus 1 extra limb for shifting
the product. */
alloc = (re_sn + 1) + (im_sn + 1) + 2 * (FLINT_MAX(re_sn, im_sn) + 2) + 1;
ARF_ADD_TMP_ALLOC(re_sum, alloc)
im_sum = re_sum + (re_sn + 1);
tmp = im_sum + (im_sn + 1);
/* Sum of propagated errors. */
re_srad_exp = re_max_rad_exp;
re_srad = 0;
im_srad_exp = im_max_rad_exp;
im_srad = 0;
/* Set sum to 0 */
re_serr = 0;
for (j = 0; j < re_sn + 1; j++)
re_sum[j] = 0;
im_serr = 0;
for (j = 0; j < im_sn + 1; j++)
im_sum[j] = 0;
if (initial != NULL)
{
xm = arb_midref(acb_realref(initial));
xr = arb_radref(acb_realref(initial));
ARB_DOT_ADD(re_sum, re_serr, re_sn, re_sum_exp, subtract, xm);
ARB_DOT_ADD_RAD(re_srad, re_srad_exp, xr);
xm = arb_midref(acb_imagref(initial));
xr = arb_radref(acb_imagref(initial));
ARB_DOT_ADD(im_sum, im_serr, im_sn, im_sum_exp, subtract, xm);
ARB_DOT_ADD_RAD(im_srad, im_srad_exp, xr);
}
/*
Look for terms to process using the Gauss multiplication formula.
If any such terms are found, we mask the ith entry in use_gauss
so that they will be skipped in the main loop.
Important: the cutoffs must be such that the fast case
(xn <= 2, yn <= 2, sn <= 3) is not hit below and the mask
check is done.
The cutoffs below are not optimal in the generic case; also, it
would be nicer to have both mulhigh and Gauss here. A more elegant
solution would be to write a fallback version of acb_dot_simple
where acb_addmul does the right thing.
*/
use_gauss = NULL;
if (re_prec >= GAUSS_CUTOFF * FLINT_BITS &&
im_prec >= GAUSS_CUTOFF * FLINT_BITS)
{
arf_t e, f;
for (i = 0; i < len; i++)
{
arb_srcptr ai, bi, ci, di;
mp_size_t an, bn, cn, dn;
slong aexp, bexp, cexp, dexp;
ai = ((arb_srcptr) x) + 2 * i * xstep;
bi = ((arb_srcptr) x) + 2 * i * xstep + 1;
ci = ((arb_srcptr) y) + 2 * i * ystep;
di = ((arb_srcptr) y) + 2 * i * ystep + 1;
an = ARF_SIZE(arb_midref(ai));
bn = ARF_SIZE(arb_midref(bi));
cn = ARF_SIZE(arb_midref(ci));
dn = ARF_SIZE(arb_midref(di));
aexp = ARF_EXP(arb_midref(ai));
bexp = ARF_EXP(arb_midref(bi));
cexp = ARF_EXP(arb_midref(ci));
dexp = ARF_EXP(arb_midref(di));
if (an >= GAUSS_CUTOFF && bn >= GAUSS_CUTOFF &&
bn >= GAUSS_CUTOFF && cn >= GAUSS_CUTOFF &&
FLINT_ABS(an - bn) <= 2 &&
FLINT_ABS(cn - dn) <= 2 &&
FLINT_ABS(aexp - bexp) <= 64 &&
FLINT_ABS(cexp - dexp) <= 64 &&
re_sum_exp - (aexp + cexp) < 0.1 * re_prec &&
im_sum_exp - (aexp + dexp) < 0.1 * im_prec &&
an + cn < 2.2 * re_sn && an + dn < 2.2 * im_sn)
{
if (use_gauss == NULL)
{
use_gauss = flint_calloc(len, sizeof(char));
arf_init(e);
arf_init(f);
}
use_gauss[i] = 1;
_arf_complex_mul_gauss(e, f, arb_midref(ai), arb_midref(bi), arb_midref(ci), arb_midref(di));
ARB_DOT_ADD(re_sum, re_serr, re_sn, re_sum_exp, 0, e);
ARB_DOT_ADD(im_sum, im_serr, im_sn, im_sum_exp, 0, f);
}
}
if (use_gauss != NULL)
{
arf_clear(e);
arf_clear(f);
}
}
for (xoff = 0; xoff < 2; xoff++)
{
for (yoff = 0; yoff < 2; yoff++)
{
slong sum_exp, srad_exp;
mp_ptr sum;
mp_size_t sn;
mp_limb_t serr;
uint64_t srad;
int flipsign;
if (xoff == yoff)
{
sum_exp = re_sum_exp;
srad_exp = re_srad_exp;
sum = re_sum;
sn = re_sn;
if (re_max_exp == WORD_MIN && re_max_rad_exp == WORD_MIN)
continue;
}
else
{
sum_exp = im_sum_exp;
srad_exp = im_srad_exp;
sum = im_sum;
sn = im_sn;
if (im_max_exp == WORD_MIN && im_max_rad_exp == WORD_MIN)
continue;
}
serr = 0;
srad = 0;
flipsign = (xoff + yoff == 2);
for (i = 0; i < len; i++)
{
xi = ((arb_srcptr) x) + 2 * i * xstep + xoff;
yi = ((arb_srcptr) y) + 2 * i * ystep + yoff;
xm = arb_midref(xi);
ym = arb_midref(yi);
xr = arb_radref(xi);
yr = arb_radref(yi);
/* The midpoints of x[i] and y[i] are both nonzero. */
if (!arf_is_special(xm) && !arf_is_special(ym))
{
xexp = ARF_EXP(xm);
xn = ARF_SIZE(xm);
xnegative = ARF_SGNBIT(xm);
yexp = ARF_EXP(ym);
yn = ARF_SIZE(ym);
ynegative = ARF_SGNBIT(ym);
exp = xexp + yexp;
shift = sum_exp - exp;
if (shift >= sn * FLINT_BITS)
{
/* We may yet need the top limbs for bounds. */
ARF_GET_TOP_LIMB(xtop, xm);
ARF_GET_TOP_LIMB(ytop, ym);
serr++;
}
else if (xn <= 2 && yn <= 2 && sn <= 3)
{
mp_limb_t x1, x0, y1, y0;
mp_limb_t u3, u2, u1, u0;
if (xn == 1 && yn == 1)
{
xtop = ARF_NOPTR_D(xm)[0];
ytop = ARF_NOPTR_D(ym)[0];
umul_ppmm(u3, u2, xtop, ytop);
u1 = u0 = 0;
}
else if (xn == 2 && yn == 2)
{
x0 = ARF_NOPTR_D(xm)[0];
x1 = ARF_NOPTR_D(xm)[1];
y0 = ARF_NOPTR_D(ym)[0];
y1 = ARF_NOPTR_D(ym)[1];
xtop = x1;
ytop = y1;
nn_mul_2x2(u3, u2, u1, u0, x1, x0, y1, y0);
}
else if (xn == 1)
{
x0 = ARF_NOPTR_D(xm)[0];
y0 = ARF_NOPTR_D(ym)[0];
y1 = ARF_NOPTR_D(ym)[1];
xtop = x0;
ytop = y1;
nn_mul_2x1(u3, u2, u1, y1, y0, x0);
u0 = 0;
}
else
{
x0 = ARF_NOPTR_D(xm)[0];
x1 = ARF_NOPTR_D(xm)[1];
y0 = ARF_NOPTR_D(ym)[0];
xtop = x1;
ytop = y0;
nn_mul_2x1(u3, u2, u1, x1, x0, y0);
u0 = 0;
}
if (sn == 2)
{
if (shift < FLINT_BITS)
{
serr += ((u2 << (FLINT_BITS - shift)) != 0) || (u1 != 0) || (u0 != 0);
u2 = (u2 >> shift) | (u3 << (FLINT_BITS - shift));
u3 = (u3 >> shift);
}
else if (shift == FLINT_BITS)
{
serr += (u2 != 0) || (u1 != 0) || (u0 != 0);
u2 = u3;
u3 = 0;
}
else /* FLINT_BITS < shift < 2 * FLINT_BITS */
{
serr += ((u3 << (2 * FLINT_BITS - shift)) != 0) || (u2 != 0) || (u1 != 0) || (u0 != 0);
u2 = (u3 >> (shift - FLINT_BITS));
u3 = 0;
}
if (xnegative ^ ynegative ^ flipsign)
sub_ddmmss(sum[1], sum[0], sum[1], sum[0], u3, u2);
else
add_ssaaaa(sum[1], sum[0], sum[1], sum[0], u3, u2);
}
else if (sn == 3)
{
if (shift < FLINT_BITS)
{
serr += ((u1 << (FLINT_BITS - shift)) != 0) || (u0 != 0);
u1 = (u1 >> shift) | (u2 << (FLINT_BITS - shift));
u2 = (u2 >> shift) | (u3 << (FLINT_BITS - shift));
u3 = (u3 >> shift);
}
else if (shift == FLINT_BITS)
{
serr += (u1 != 0) || (u0 != 0);
u1 = u2;
u2 = u3;
u3 = 0;
}
else if (shift < 2 * FLINT_BITS)
{
serr += ((u2 << (2 * FLINT_BITS - shift)) != 0) || (u1 != 0) || (u0 != 0);
u1 = (u3 << (2 * FLINT_BITS - shift)) | (u2 >> (shift - FLINT_BITS));
u2 = (u3 >> (shift - FLINT_BITS));
u3 = 0;
}
else if (shift == 2 * FLINT_BITS)
{
serr += (u2 != 0) || (u1 != 0) || (u0 != 0);
u1 = u3;
u2 = 0;
u3 = 0;
}
else /* 2 * FLINT_BITS < shift < 3 * FLINT_BITS */
{
serr += ((u3 << (3 * FLINT_BITS - shift)) != 0) || (u2 != 0) || (u1 != 0) || (u0 != 0);
u1 = (u3 >> (shift - 2 * FLINT_BITS));
u2 = 0;
u3 = 0;
}
if (xnegative ^ ynegative ^ flipsign)
sub_dddmmmsss2(sum[2], sum[1], sum[0], sum[2], sum[1], sum[0], u3, u2, u1);
else
add_sssaaaaaa2(sum[2], sum[1], sum[0], sum[2], sum[1], sum[0], u3, u2, u1);
}
}
else
{
mp_srcptr xptr, yptr;
xptr = (xn <= ARF_NOPTR_LIMBS) ? ARF_NOPTR_D(xm) : ARF_PTR_D(xm);
yptr = (yn <= ARF_NOPTR_LIMBS) ? ARF_NOPTR_D(ym) : ARF_PTR_D(ym);
xtop = xptr[xn - 1];
ytop = yptr[yn - 1];
if (use_gauss == NULL || use_gauss[i] == 0)
_arb_dot_addmul_generic(sum, &serr, tmp, sn, xptr, xn, yptr, yn, xnegative ^ ynegative ^ flipsign, shift);
}
xrad = MAG_MAN(xr);
yrad = MAG_MAN(yr);
if (xrad != 0 && yrad != 0)
{
xrexp = MAG_EXP(xr);
yrexp = MAG_EXP(yr);
RAD_ADDMUL(srad, srad_exp, (xtop >> (FLINT_BITS - MAG_BITS)) + 1, yrad, xexp + yrexp);
RAD_ADDMUL(srad, srad_exp, (ytop >> (FLINT_BITS - MAG_BITS)) + 1, xrad, yexp + xrexp);
RAD_ADDMUL(srad, srad_exp, xrad, yrad, xrexp + yrexp);
}
else if (xrad != 0)
{
xrexp = MAG_EXP(xr);
RAD_ADDMUL(srad, srad_exp, (ytop >> (FLINT_BITS - MAG_BITS)) + 1, xrad, yexp + xrexp);
}
else if (yrad != 0)
{
yrexp = MAG_EXP(yr);
RAD_ADDMUL(srad, srad_exp, (xtop >> (FLINT_BITS - MAG_BITS)) + 1, yrad, xexp + yrexp);
}
}
else
{
xrad = MAG_MAN(xr);
yrad = MAG_MAN(yr);
xexp = ARF_EXP(xm);
yexp = ARF_EXP(ym);
xrexp = MAG_EXP(xr);
yrexp = MAG_EXP(yr);
/* (xm+xr)(ym+yr) = xm ym + [xm yr + ym xr + xr yr] */
if (yrad && !arf_is_special(xm))
{
ARF_GET_TOP_LIMB(xtop, xm);
RAD_ADDMUL(srad, srad_exp, (xtop >> (FLINT_BITS - MAG_BITS)) + 1, yrad, xexp + yrexp);
}
if (xrad && !arf_is_special(ym))
{
ARF_GET_TOP_LIMB(ytop, ym);
RAD_ADDMUL(srad, srad_exp, (ytop >> (FLINT_BITS - MAG_BITS)) + 1, xrad, yexp + xrexp);
}
if (xrad && yrad)
{
RAD_ADDMUL(srad, srad_exp, xrad, yrad, xrexp + yrexp);
}
}
}
if (xoff == yoff)
{
re_serr += serr;
re_srad += srad;
}
else
{
im_serr += serr;
im_srad += srad;
}
}
}
_arb_dot_output(acb_realref(res), re_sum, re_sn, subtract, re_serr, re_sum_exp, re_srad, re_srad_exp, re_prec);
_arb_dot_output(acb_imagref(res), im_sum, im_sn, subtract, im_serr, im_sum_exp, im_srad, im_srad_exp, im_prec);
ARF_ADD_TMP_FREE(re_sum, alloc);
if (use_gauss != NULL)
flint_free(use_gauss);
}