/* Copyright (C) 2016 Pascal Molin This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb_dft.h" typedef void (*do_f) (acb_ptr w, acb_srcptr v, slong len, slong prec); void check_vec_eq_prec(acb_srcptr w1, acb_srcptr w2, slong len, slong prec, slong digits, ulong q, char d[], char f1[], char f2[]) { slong i; for (i = 0; i < len; i++) { if (!acb_overlaps(w1 + i, w2 + i)) { flint_printf("FAIL\n\n"); flint_printf("q = %wu, size = %wd\n", q, len); flint_printf("\nDFT %s differ from index %wd / %wd \n", d, i, len); flint_printf("\n%s =\n", f1); acb_vec_printd_index(w1, len, digits); flint_printf("\n%s =\n", f2); acb_vec_printd_index(w2, len, digits); flint_printf("\n\n"); abort(); } else if (!acb_is_zero(w1+i) && (acb_rel_accuracy_bits(w1 + i) < 30 || acb_rel_accuracy_bits(w2 + i) < 30)) { flint_printf("FAIL\n\n"); flint_printf("q = %wu\n", q); flint_printf("\nDFT inaccurate from index %wd / %wd \n", i, len); flint_printf("\n%s =\n", f1); acb_printd(w1 + i, digits); flint_printf("\n%s =\n", f2); acb_printd(w2 + i, digits); flint_printf("\nerrors %wd & %wd [prec = %wd]\n", acb_rel_accuracy_bits(w1 + i), acb_rel_accuracy_bits(w2 + i), prec); abort(); } } } int main() { slong k; slong prec = 100, digits = 30; slong nq = 19; ulong q[19] = { 0, 1, 2, 3, 4, 5, 6, 23, 10, 15, 16, 30, 59, 125, 308, 335, 525, 961, 1225}; slong nr = 5; flint_rand_t state; slong f, nf = 5; do_f func[5] = { acb_dft_naive, acb_dft_cyc, acb_dft_crt, acb_dft_bluestein, acb_dft }; char * name[5] = { "naive", "cyc", "crt", "bluestein", "default" }; flint_printf("dft...."); fflush(stdout); flint_randinit(state); /* cyclic dft */ for (k = 0; k < nq + nr; k++) { slong i, len, f0; acb_ptr v, w1, w2, w3; if (k < nq) len = q[k]; else len = n_randint(state, 1000); v = _acb_vec_init(len); w1 = _acb_vec_init(len); w2 = _acb_vec_init(len); w3 = _acb_vec_init(len); for (i = 0; i < len; i++) acb_set_si_si(v + i, i, 3 - i); /* avoid naive for long transforms */ f0 = (len > 50); for (f = f0; f < nf; f++) { acb_ptr w = (f == f0) ? w1 : w2; if (DFT_VERB) flint_printf("\n%s %wu\n", name[f], len); /* compute DFT */ func[f](w, v, len, prec); if (len < 500) { /* check aliasing */ _acb_vec_set(w3, v, len); func[f](w3, w3, len, prec); check_vec_eq_prec(w1, w3, len, prec, digits, len, "alias", name[0], name[f]); } if (f > f0) { /* check non aliased */ check_vec_eq_prec(w1, w2, len, prec, digits, len, "no alias", name[0], name[f]); } else { /* check inverse */ acb_dft_inverse(w2, w1, len, prec); check_vec_eq_prec(v, w2, len, prec, digits, len, "inverse", "original", "inverse"); } } _acb_vec_clear(v, len); _acb_vec_clear(w1, len); _acb_vec_clear(w2, len); _acb_vec_clear(w3, len); } /* radix2 dft */ for (k = 0; k < 11; k++) { slong n = 1 << k, j; acb_ptr v, w1, w2; v = w2 = _acb_vec_init(n); w1 = _acb_vec_init(n); for (j = 0; j < n; j++) acb_set_si_si(v + j, j, j + 2); acb_dft_cyc(w1, v, n, prec); acb_dft_rad2_inplace(w2, k, prec); check_vec_eq_prec(w1, w2, n, prec, digits, n, "rad2", "cyc", "rad2"); _acb_vec_clear(v, n); _acb_vec_clear(w1, n); } /* multi-threaded radix2 dft */ for (k = 0; k < 11; k++) { slong n = 1 << k, j; acb_ptr v, w1, w2; v = w2 = _acb_vec_init(n); w1 = _acb_vec_init(n); flint_set_num_threads(k % 5 + 1); for (j = 0; j < n; j++) acb_set_si_si(v + j, j, j + 2); acb_dft_cyc(w1, v, n, prec); acb_dft_rad2_inplace_threaded(w2, k, prec); check_vec_eq_prec(w1, w2, n, prec, digits, n, "rad2", "cyc", "rad2"); _acb_vec_clear(v, n); _acb_vec_clear(w1, n); } flint_randclear(state); flint_cleanup(); flint_printf("PASS\n"); return EXIT_SUCCESS; }