/* Copyright (C) 2016 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb_dirichlet.h" void acb_dirichlet_hurwitz_precomp_bound(mag_t res, const acb_t s, slong A, slong K, slong N) { acb_t s1; mag_t x, t, TK, C; slong sigmaK; arf_t u; if (A < 1 || K < 1 || N < 1) { mag_inf(res); return; } /* sigmaK = re(s) + K, floor bound */ arf_init(u); arf_set_mag(u, arb_radref(acb_realref(s))); arf_sub(u, arb_midref(acb_realref(s)), u, MAG_BITS, ARF_RND_FLOOR); arf_add_ui(u, u, K, MAG_BITS, ARF_RND_FLOOR); if (arf_cmp_ui(u, 2) < 0 || arf_cmp_2exp_si(u, FLINT_BITS - 2) > 0) { mag_inf(res); arf_clear(u); return; } sigmaK = arf_get_si(u, ARF_RND_FLOOR); arf_clear(u); acb_init(s1); mag_init(x); mag_init(t); mag_init(TK); mag_init(C); /* With N grid points, we will have |x| <= 1 / (2N). */ mag_one(x); mag_div_ui(x, x, 2 * N); /* T(K) = |x|^K |(s)_K| / K! * [1/A^(sigma+K) + ...] */ mag_pow_ui(TK, x, K); acb_rising_ui_get_mag(t, s, K); mag_mul(TK, TK, t); mag_rfac_ui(t, K); mag_mul(TK, TK, t); /* Note: here we assume that mag_hurwitz_zeta_uiui uses an error bound that is at least as large as the one used in the proof. */ mag_hurwitz_zeta_uiui(t, sigmaK, A); mag_mul(TK, TK, t); /* C = |x|/A (1 + 1/(K+sigma+A-1)) (1 + |s-1|/(K+1)) */ mag_div_ui(C, x, A); mag_one(t); mag_div_ui(t, t, sigmaK + A - 1); mag_add_ui(t, t, 1); mag_mul(C, C, t); acb_sub_ui(s1, s, 1, MAG_BITS); acb_get_mag(t, s1); mag_div_ui(t, t, K + 1); mag_add_ui(t, t, 1); mag_mul(C, C, t); mag_geom_series(t, C, 0); mag_mul(res, TK, t); acb_clear(s1); mag_clear(x); mag_clear(t); mag_clear(TK); mag_clear(C); }