/* Copyright (C) 2016 Pascal Molin This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb_dirichlet.h" void acb_dirichlet_jacobi_sum_factor(acb_t res, const dirichlet_group_t G, const dirichlet_char_t chi1, const dirichlet_char_t chi2, slong prec) { slong k; acb_t tmp; acb_init(tmp); acb_one(res); /* TODO: efficient subgroup */ for (k = 0; k < G->num; k++) { nmod_t pe; ulong p, e, ap, bp; p = G->P[k].p; e = G->P[k].e; pe = G->P[k].pe; ap = chi1->n % pe.n; bp = chi2->n % pe.n; if (ap == 1 || bp == 1 || nmod_mul(ap, bp, pe) == 1) { slong r; ulong cond; cond = (ap == 1) ? dirichlet_conductor_char(G, chi2) : dirichlet_conductor_char(G, chi1); r = jacobi_one_prime(p, e, pe.n, cond); /* chi(a,-1) if ap * bp = 1 */ if (ap != 1 && bp != 1) r *= n_jacobi_unsigned(ap, p); acb_mul_si(res, res, r, prec); } else { dirichlet_group_t Gp; dirichlet_char_t chi1p, chi2p; dirichlet_group_init(Gp, pe.n); dirichlet_char_init(chi1p, Gp); dirichlet_char_init(chi2p, Gp); chi1p->n = ap; chi1p->log[0] = chi1->log[k]; chi2p->n = ap; chi2p->log[0] = chi2->log[k]; /* TODO: work out gauss relations for e > 1 */ if (p <= 100 || e > 1) acb_dirichlet_jacobi_sum_naive(tmp, Gp, chi1p, chi2p, prec); else acb_dirichlet_jacobi_sum_gauss(tmp, Gp, chi1p, chi2p, prec); acb_mul(res, res, tmp, prec); dirichlet_char_clear(chi1p); dirichlet_char_clear(chi2p); dirichlet_group_clear(Gp); } } acb_clear(tmp); }