/* Copyright (C) 2016 Fredrik Johansson Copyright (C) 2016 Pascal Molin This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb_dirichlet.h" #include "acb_poly.h" /* todo: move implemetation to the acb_dirichlet module */ void _acb_poly_zeta_cpx_reflect(acb_ptr t, const acb_t h, const acb_t a, int deflate, slong len, slong prec); void acb_dirichlet_l_jet(acb_ptr res, const acb_t s, const dirichlet_group_t G, const dirichlet_char_t chi, int deflate, slong len, slong prec) { ulong order, chin, mult, phi; acb_t a, w; acb_ptr t, u; dirichlet_char_t cn; acb_dirichlet_roots_t roots; int deflate_hurwitz; if (len <= 0) return; /* special-case Riemann zeta */ if (G == NULL || G->q == 1) { if (len == 1 && !deflate) acb_dirichlet_zeta(res, s, prec); else acb_dirichlet_zeta_jet(res, s, deflate, len, prec); return; } if (len == 1 && !(deflate && dirichlet_char_is_principal(G, chi))) { acb_dirichlet_l(res, s, G, chi, prec); return; } if (dirichlet_char_is_principal(G, chi)) deflate_hurwitz = deflate; else deflate_hurwitz = acb_is_one(s); dirichlet_char_init(cn, G); t = _acb_vec_init(len); u = _acb_vec_init(len + 2); acb_init(a); acb_init(w); dirichlet_char_one(cn, G); prec += n_clog(G->phi_q, 2); order = dirichlet_order_char(G, chi); mult = G->expo / order; acb_dirichlet_roots_init(roots, order, dirichlet_group_size(G), prec); phi = 0; do { chin = dirichlet_pairing_char(G, chi, cn) / mult; acb_set_ui(a, cn->n); acb_div_ui(a, a, G->q, prec); _acb_poly_zeta_cpx_series(u, s, a, deflate_hurwitz, len, prec); acb_dirichlet_root(w, roots, chin, prec); _acb_vec_scalar_addmul(t, u, len, w, prec); phi++; } while (dirichlet_char_next(cn, G) >= 0); if (dirichlet_char_is_principal(G, chi) && deflate) { /* res = t * q^(-(s+x)) + [phi(q) * (q^(-(s+x)) - q^-1) / ((s+x)-1)] */ if (acb_is_one(s)) { acb_set_ui(a, G->q); _acb_poly_acb_invpow_cpx(u, a, s, len + 1, prec); _acb_poly_mullow(res, t, len, u, len, len, prec); acb_set_ui(u, phi); _acb_vec_scalar_addmul(res, u + 1, len, u, prec); } else { acb_sub_ui(u, s, 1, prec); acb_one(u + 1); acb_set_ui(a, G->q); _acb_poly_acb_invpow_cpx(u + 2, a, s, len, prec); _acb_poly_mullow(res, t, len, u + 2, len, len, prec); acb_inv(a, a, prec); acb_sub(u + 2, u + 2, a, prec); _acb_poly_div_series(t, u + 2, len, u, 2, len, prec); acb_set_ui(u, phi); _acb_vec_scalar_addmul(res, t, len, u, prec); } } else { /* res = t * q^(-(s+x)) */ acb_set_ui(a, G->q); _acb_poly_acb_invpow_cpx(u, a, s, len, prec); _acb_poly_mullow(res, t, len, u, len, len, prec); } dirichlet_char_clear(cn); acb_dirichlet_roots_clear(roots); _acb_vec_clear(t, len); _acb_vec_clear(u, len + 2); acb_clear(a); acb_clear(w); }