/* Copyright (C) 2016 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb_dirichlet.h" #include "acb_poly.h" #define POWER(_k) (powers + (((_k)-1)/2) * (len)) #define DIVISOR(_k) (divisors[((_k)-1)/2]) void acb_dirichlet_powsum_sieved(acb_ptr z, const acb_t s, ulong n, slong len, slong prec) { slong * divisors; slong powers_alloc; slong i, j, k, ibound, power_of_two, horner_point; ulong kprev; int critical_line, integer; acb_ptr powers; acb_ptr t, u, x; acb_ptr p1, p2; arb_t logk, v, w; if (n <= 1) { acb_set_ui(z, n); _acb_vec_zero(z + 1, len - 1); return; } critical_line = arb_is_exact(acb_realref(s)) && (arf_cmp_2exp_si(arb_midref(acb_realref(s)), -1) == 0); integer = arb_is_zero(acb_imagref(s)) && arb_is_int(acb_realref(s)); divisors = flint_calloc(n / 2 + 1, sizeof(slong)); powers_alloc = (n / 6 + 1) * len; powers = _acb_vec_init(powers_alloc); ibound = n_sqrt(n); for (i = 3; i <= ibound; i += 2) if (DIVISOR(i) == 0) for (j = i * i; j <= n; j += 2 * i) DIVISOR(j) = i; t = _acb_vec_init(len); u = _acb_vec_init(len); x = _acb_vec_init(len); arb_init(logk); arb_init(v); arb_init(w); power_of_two = 1; while (power_of_two * 2 <= n) power_of_two *= 2; horner_point = n / power_of_two; _acb_vec_zero(z, len); kprev = 1; acb_dirichlet_powsum_term(x, logk, &kprev, s, 2, integer, critical_line, len, prec); for (k = 1; k <= n; k += 2) { /* t = k^(-s) */ if (DIVISOR(k) == 0) { acb_dirichlet_powsum_term(t, logk, &kprev, s, k, integer, critical_line, len, prec); } else { p1 = POWER(DIVISOR(k)); p2 = POWER(k / DIVISOR(k)); if (len == 1) acb_mul(t, p1, p2, prec); else _acb_poly_mullow(t, p1, len, p2, len, len, prec); } if (k * 3 <= n) _acb_vec_set(POWER(k), t, len); _acb_vec_add(u, u, t, len, prec); while (k == horner_point && power_of_two != 1) { _acb_poly_mullow(t, z, len, x, len, len, prec); _acb_vec_add(z, t, u, len, prec); power_of_two /= 2; horner_point = n / power_of_two; horner_point -= (horner_point % 2 == 0); } } _acb_poly_mullow(t, z, len, x, len, len, prec); _acb_vec_add(z, t, u, len, prec); flint_free(divisors); _acb_vec_clear(powers, powers_alloc); _acb_vec_clear(t, len); _acb_vec_clear(u, len); _acb_vec_clear(x, len); arb_clear(logk); arb_clear(v); arb_clear(w); }