/* Copyright (C) 2020 D.H.J. Polymath This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb_dirichlet.h" static void _arb_div_si_si(arb_t res, slong a, slong b, slong prec) { arb_set_si(res, a); arb_div_si(res, res, b, prec); } static int _arb_vec_overlaps(arb_srcptr a, arb_srcptr b, slong len) { slong i; for (i = 0; i < len; i++) { if (!arb_overlaps(a + i, b + i)) { return 0; } } return 1; } int main() { slong iter; flint_rand_t state; flint_printf("platt_multieval_threaded...."); fflush(stdout); flint_randinit(state); /* Check a specific combination of parameter values that is relatively fast * to evaluate and that has relatively tight bounds. */ { slong A = 8; slong B = 128; slong N = A*B; slong J = 1000; slong K = 30; slong sigma = 63; slong prec = 128; fmpz_t T; arb_t h; arb_ptr vec; arb_init(h); fmpz_init(T); fmpz_set_si(T, 10000); arb_set_d(h, 4.5); flint_set_num_threads(5); /* Check a few random entries in the multieval vector. */ vec = _arb_vec_init(N); acb_dirichlet_platt_multieval_threaded(vec, T, A, B, h, J, K, sigma, prec); for (iter = 0; iter < 20; iter++) { arb_t t, r; slong i = n_randint(state, N); slong n = i - N/2; arb_init(t); arb_init(r); _arb_div_si_si(t, n, A, prec); arb_add_fmpz(t, t, T, prec); acb_dirichlet_platt_scaled_lambda(r, t, prec); if (!arb_overlaps(vec + i, r)) { flint_printf("FAIL: overlap for hardcoded example\n\n"); flint_printf("i = %wd n = %wd\n\n", i, n); flint_printf("vec[%wd] = ", i); arb_printn(vec + i, 30, 0); flint_printf("\n\n"); flint_printf("r = "); arb_printn(r, 30, 0); flint_printf("\n\n"); flint_abort(); } arb_clear(t); arb_clear(r); } fmpz_clear(T); arb_clear(h); _arb_vec_clear(vec, N); } for (iter = 0; iter < 10 * arb_test_multiplier(); iter++) { slong prec; ulong A, B, N, J, K; slong sigma, Tbits; fmpz_t T; arb_t h; arb_ptr v1, v2; /* better but slower limits are in parentheses below */ prec = 2 + n_randint(state, 300); sigma = 1 + 2*(1 + n_randint(state, 100)); /* (200) */ J = 1 + n_randint(state, 100); /* (10000) */ K = 1 + n_randint(state, 20); /* (50) */ A = 1 + n_randint(state, 10); B = 1 + n_randint(state, 10); /* (500) */ if (n_randint(state, 2)) A *= 2; else B *= 2; N = A*B; fmpz_init(T); Tbits = 5 + n_randint(state, 15); fmpz_set_ui(T, n_randtest_bits(state, Tbits)); arb_init(h); arb_set_si(h, 1 + n_randint(state, 20000)); arb_div_si(h, h, 1000, prec); flint_set_num_threads(1 + n_randint(state, 5)); v1 = _arb_vec_init(N); v2 = _arb_vec_init(N); acb_dirichlet_platt_scaled_lambda_vec(v1, T, A, B, prec); acb_dirichlet_platt_multieval_threaded(v2, T, A, B, h, J, K, sigma, prec); if (!_arb_vec_overlaps(v1, v2, N)) { flint_printf("FAIL: overlap\n\n"); flint_printf("iter = %wd prec = %wd\n\n", iter, prec); flint_printf("sigma = %wd\n\n", sigma); flint_printf("A = %wu B = %wu J = %wu K = %wu\n\n", A, B, J, K); flint_printf("T = "); fmpz_print(T); flint_printf("\n\n"); flint_printf("h = "); arb_printn(h, 30, 0); flint_printf("\n\n"); flint_abort(); } arb_clear(h); fmpz_clear(T); _arb_vec_clear(v1, N); _arb_vec_clear(v2, N); } flint_randclear(state); flint_cleanup(); flint_printf("PASS\n"); return EXIT_SUCCESS; }