/* Copyright (C) 2017 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb_dirichlet.h" void _acb_dirichlet_zeta_jet(acb_t t, const acb_t h, int deflate, slong len, slong prec) { acb_t a; acb_init(a); acb_one(a); /* use reflection formula */ if (arf_sgn(arb_midref(acb_realref(h))) < 0) { /* zeta(s) = (2*pi)**s * sin(pi*s/2) / pi * gamma(1-s) * zeta(1-s) */ acb_t pi, hcopy; acb_ptr f, s1, s2, s3, s4, u; slong i; acb_init(pi); acb_init(hcopy); f = _acb_vec_init(2); s1 = _acb_vec_init(len); s2 = _acb_vec_init(len); s3 = _acb_vec_init(len); s4 = _acb_vec_init(len); u = _acb_vec_init(len); acb_set(hcopy, h); acb_const_pi(pi, prec); /* s1 = (2*pi)**s */ acb_mul_2exp_si(pi, pi, 1); _acb_poly_pow_cpx(s1, pi, h, len, prec); acb_mul_2exp_si(pi, pi, -1); /* s2 = sin(pi*s/2) / pi */ acb_set(f, h); acb_one(f + 1); acb_mul_2exp_si(f, f, -1); acb_mul_2exp_si(f + 1, f + 1, -1); _acb_poly_sin_pi_series(s2, f, 2, len, prec); _acb_vec_scalar_div(s2, s2, len, pi, prec); /* s3 = gamma(1-s) */ acb_sub_ui(f, hcopy, 1, prec); acb_neg(f, f); acb_set_si(f + 1, -1); _acb_poly_gamma_series(s3, f, 2, len, prec); /* s4 = zeta(1-s) */ acb_sub_ui(f, hcopy, 1, prec); acb_neg(f, f); _acb_poly_zeta_cpx_series(s4, f, a, 0, len, prec); for (i = 1; i < len; i += 2) acb_neg(s4 + i, s4 + i); _acb_poly_mullow(u, s1, len, s2, len, len, prec); _acb_poly_mullow(s1, s3, len, s4, len, len, prec); _acb_poly_mullow(t, u, len, s1, len, len, prec); /* add 1/(1-(s+t)) = 1/(1-s) + t/(1-s)^2 + ... */ if (deflate) { acb_sub_ui(u, hcopy, 1, prec); acb_neg(u, u); acb_inv(u, u, prec); for (i = 1; i < len; i++) acb_mul(u + i, u + i - 1, u, prec); _acb_vec_add(t, t, u, len, prec); } acb_clear(pi); acb_clear(hcopy); _acb_vec_clear(f, 2); _acb_vec_clear(s1, len); _acb_vec_clear(s2, len); _acb_vec_clear(s3, len); _acb_vec_clear(s4, len); _acb_vec_clear(u, len); } else { _acb_poly_zeta_cpx_series(t, h, a, deflate, len, prec); } acb_clear(a); } /* todo: should adjust precision to input accuracy */ void acb_dirichlet_zeta_jet(acb_t res, const acb_t s, int deflate, slong len, slong prec) { double cutoff; if (len == 1 && deflate == 0) { acb_zeta(res, s, prec); return; } if (deflate == 0 && (arb_contains_zero(acb_imagref(s)) && arb_contains_si(acb_realref(s), 1))) { _acb_vec_indeterminate(res, len); return; } if (len > 2 || deflate != 0) { _acb_dirichlet_zeta_jet(res, s, deflate, len, prec); } else { cutoff = 24.0 * prec * sqrt(prec); if (arb_is_exact(acb_realref(s)) && arf_cmp_2exp_si(arb_midref(acb_realref(s)), -1) == 0) cutoff *= 2.5; else cutoff *= 4.0; if (arf_cmpabs_d(arb_midref(acb_imagref(s)), cutoff) >= 0 && arf_cmpabs_d(arb_midref(acb_realref(s)), 10 + prec * 0.1) <= 0) { acb_dirichlet_zeta_jet_rs(res, s, len, prec); } else { _acb_dirichlet_zeta_jet(res, s, deflate, len, prec); } } }