/* Copyright (C) 2017 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb_elliptic.h" static const unsigned short den_ratio_tab[512] = { 1,1,10,7,12,11,26,1,136,19,2,23,20,1,58,31, 16,1,74,1,164,43,2,47,56,1,106,1,4,59,122,1, 32,67,2,71,292,1,2,79,24,83,2,1,356,1,2,1, 1552,1,202,103,4,107,218,1,904,1,2,1,44,1,10,127, 64,131,2,1,548,139,2,1,8,1,298,151,4,1,314,1, 16,163,2,167,52,1,346,1,8,179,362,1,4,1,2,191, 6176,1,394,199,4,1,2,1,8,211,2,1,4,1,2,223, 16,227,458,1,932,1,2,239,1928,1,2,1,4,251,2,1, 32896,1,2,263,4,1,538,271,8,1,554,1,1124,283,2,1, 272,1,586,1,4,1,2,1,8,307,2,311,1252,1,634,1, 32,1,2,1,4,331,2,1,2696,1,2,7,4,347,698,1, 5648,1,2,359,76,1,2,367,8,1,746,1,4,379,2,383, 64,1,778,1,4,1,794,1,3208,1,2,1,1636,1,2,1, 16,419,842,1,4,1,2,431,3464,1,2,439,4,443,2,1, 14368,1,2,1,1828,1,922,463,8,467,2,1,4,1,2,479, 16,1,2,487,4,491,2,1,8,499,2,503,4,1,1018,1, 256,1,2,1,2084,523,2,1,184,1,2,1,4,1,1082,1, 16,547,2,1,4,1,1114,1,8,563,2,1,2276,571,2,1, 18464,1,2,1,4,587,2,1,4744,1,2,599,2404,1,2,607, 16,1,1226,1,2468,619,2,1,40,1,2,631,4,1,2,1, 41024,643,2,647,4,1,1306,1,8,659,1322,1,4,1,2,1, 10768,1,1354,1,4,683,2,1,8,691,2,1,4,1,1402,1, 32,1,1418,1,4,1,2,719,8,1,2,727,12,1,1466,1, 16,739,2,743,4,1,2,751,8,1,1514,1,3044,1,2,2, 49216,1,1546,1,4,1,2,1,8,787,2,1,4,1,1594,1, 16,1,2,1,3236,811,2,1,8,1,1642,823,4,827,1658,1, 32,1,2,839,116,1,2,1,8,1,1706,1,3428,859,2,863, 16,1,2,1,4,1,1754,1,7048,883,2,887,4,1,2,1, 64,1,2,1,4,907,2,911,8,1,2,919,4,1,2,1, 14864,1,2,1,3748,1,1882,1,8,947,2,1,3812,1,2,1, 992,1,2,967,4,971,2,1,7816,1,2,983,4,1,2,991, 16,1,1994,1,4,1,2,1,8072,1,2026,1,4,1019,2042,1, }; void acb_elliptic_rf_taylor_sum(acb_t res, const acb_t E2, const acb_t E3, slong nterms, slong prec) { fmpz_t den, c, d, e; acb_ptr E2pow; arb_ptr E2powr; acb_t s; slong x, y, XMAX, YMAX, NMAX, N; int real; NMAX = nterms - 1; YMAX = NMAX / 3; XMAX = NMAX / 2; real = acb_is_real(E2) && acb_is_real(E3); fmpz_init(den); fmpz_init(c); fmpz_init(d); fmpz_init(e); acb_init(s); if (real) { E2powr = _arb_vec_init(XMAX + 1); E2pow = NULL; _arb_vec_set_powers(E2powr, acb_realref(E2), XMAX + 1, prec); } else { E2pow = _acb_vec_init(XMAX + 1); E2powr = NULL; _acb_vec_set_powers(E2pow, E2, XMAX + 1, prec); } /* Compute universal denominator. */ fmpz_one(den); for (N = 1; N <= NMAX; N++) fmpz_mul_ui(den, den, den_ratio_tab[N]); /* Compute initial coefficient rf(1/2,y) / y! */ fmpz_set(c, den); for (y = 0; y < YMAX; y++) { fmpz_mul_ui(c, c, 2 * y + 1); fmpz_divexact_ui(c, c, 2 * y + 2); } acb_zero(res); for (y = YMAX; y >= 0; y--) { acb_zero(s); if (y != YMAX) { fmpz_mul_ui(c, c, 2 * y + 2); fmpz_divexact_ui(c, c, 2 * y + 1); } fmpz_set(d, c); /* Use powers with respect to E2 */ for (x = 0; x <= XMAX; x++) { N = 2 * x + 3 * y; if (N <= NMAX) { fmpz_divexact_ui(e, d, 2 * N + 1); if (x % 2 == 1) fmpz_neg(e, e); if (x != 0 || y != 0) { if (real) arb_addmul_fmpz(acb_realref(s), E2powr + x, e, prec); else acb_addmul_fmpz(s, E2pow + x, e, prec); } fmpz_mul_ui(d, d, 2 * x + 2 * y + 1); fmpz_divexact_ui(d, d, 2 * x + 2); } } /* Horner with respect to E3 */ acb_mul(res, res, E3, prec); acb_add(res, res, s, prec); } acb_div_fmpz(res, res, den, prec); acb_add_ui(res, res, 1, prec); fmpz_clear(den); fmpz_clear(c); fmpz_clear(d); fmpz_clear(e); acb_clear(s); if (real) _arb_vec_clear(E2powr, XMAX + 1); else _acb_vec_clear(E2pow, XMAX + 1); } void acb_elliptic_rf(acb_t res, const acb_t x, const acb_t y, const acb_t z, int flags, slong prec) { acb_t xx, yy, zz, sx, sy, sz, t; acb_t X, Y, Z, E2, E3; mag_t err, err2, prev_err; slong k, wp, accx, accy, accz, order; if (!acb_is_finite(x) || !acb_is_finite(y) || !acb_is_finite(z)) { acb_indeterminate(res); return; } if (acb_contains_zero(x) + acb_contains_zero(y) + acb_contains_zero(z) > 1) { acb_indeterminate(res); return; } acb_init(xx); acb_init(yy); acb_init(zz); acb_init(sx); acb_init(sy); acb_init(sz); acb_init(X); acb_init(Y); acb_init(Z); acb_init(E2); acb_init(E3); acb_init(t); mag_init(err); mag_init(err2); mag_init(prev_err); order = 5; /* will be set later */ acb_set(xx, x); acb_set(yy, y); acb_set(zz, z); /* First guess precision based on the inputs. */ /* This does not account for mixing. */ accx = acb_rel_accuracy_bits(xx); accy = acb_rel_accuracy_bits(yy); accz = acb_rel_accuracy_bits(zz); accx = FLINT_MAX(accx, accy); accx = FLINT_MAX(accx, accz); if (accx < prec - 20) prec = FLINT_MAX(2, accx + 20); wp = prec + 10 + FLINT_BIT_COUNT(prec); /* Must do at least one iteration. */ for (k = 0; k < prec; k++) { acb_sqrt(sx, xx, wp); acb_sqrt(sy, yy, wp); acb_sqrt(sz, zz, wp); acb_add(t, sy, sz, wp); acb_mul(t, t, sx, wp); acb_addmul(t, sy, sz, wp); acb_add(xx, xx, t, wp); acb_add(yy, yy, t, wp); acb_add(zz, zz, t, wp); acb_mul_2exp_si(xx, xx, -2); acb_mul_2exp_si(yy, yy, -2); acb_mul_2exp_si(zz, zz, -2); /* Improve precision estimate and set expansion order. */ /* Should this done for other k also? */ if (k == 0) { accx = acb_rel_accuracy_bits(xx); accy = acb_rel_accuracy_bits(yy); accz = acb_rel_accuracy_bits(zz); accx = FLINT_MAX(accx, accy); accx = FLINT_MAX(accx, accz); if (accx < prec - 20) prec = FLINT_MAX(2, accx + 20); wp = prec + 10 + FLINT_BIT_COUNT(prec); if (acb_is_real(xx) && acb_is_real(yy) && acb_is_real(zz)) order = 2.1 * pow(prec, 0.4); else order = 2.5 * pow(prec, 0.4); order = FLINT_MIN(order, 500); order = FLINT_MAX(order, 2); } /* Close enough? Quick estimate based on |x-y|/|x| and |x-z|/|x| */ /* We also terminate if there is no improvement. */ acb_sub(t, xx, yy, wp); acb_get_mag(err, t); acb_sub(t, xx, zz, wp); acb_get_mag(err2, t); mag_max(err, err, err2); acb_get_mag_lower(err2, xx); mag_div(err, err, err2); mag_pow_ui(err, err, order); if (mag_cmp_2exp_si(err, -prec) < 0 || (k > 2 && mag_cmp(err, prev_err) > 0)) break; mag_set(prev_err, err); } /* X = 1-x/t, Y = 1-y/t, Z = -X-Y, t = (x+y+z)/3 */ acb_add(t, xx, yy, wp); acb_add(t, t, zz, wp); acb_div_ui(t, t, 3, wp); acb_div(X, xx, t, wp); acb_sub_ui(X, X, 1, wp); acb_neg(X, X); acb_div(Y, yy, t, wp); acb_sub_ui(Y, Y, 1, wp); acb_neg(Y, Y); acb_add(Z, X, Y, wp); acb_neg(Z, Z); /* E2 = XY-Z^2, E3 = XYZ */ acb_mul(E2, X, Y, wp); acb_mul(E3, E2, Z, wp); acb_submul(E2, Z, Z, wp); /* Crude bound for the coefficient of X^n1 Y^n2 Z^n3 with n1+n2+n3=n: 2*(9/8)^n. */ /* Error bound. */ acb_get_mag(err, X); acb_get_mag(err2, Y); mag_max(err, err, err2); acb_get_mag(err2, Z); mag_max(err, err, err2); mag_mul_ui(err, err, 9); mag_mul_2exp_si(err, err, -3); mag_geom_series(err, err, order); mag_mul_2exp_si(err, err, 1); acb_elliptic_rf_taylor_sum(sx, E2, E3, order, wp); if (acb_is_real(X) && acb_is_real(Y)) arb_add_error_mag(acb_realref(sx), err); else acb_add_error_mag(sx, err); acb_rsqrt(t, t, wp); acb_mul(res, sx, t, prec); acb_clear(xx); acb_clear(yy); acb_clear(zz); acb_clear(sx); acb_clear(sy); acb_clear(sz); acb_clear(X); acb_clear(Y); acb_clear(Z); acb_clear(E2); acb_clear(E3); acb_clear(t); mag_clear(err); mag_clear(err2); mag_clear(prev_err); }