/* Copyright (C) 2017 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb_elliptic.h" /* Test input from Carlson's paper and checked with mpmath. */ static const double testdata_rg[7][8] = { {0.0, 0.0, 16.0, 0.0, 16.0, 0.0, 3.1415926535897932385, 0.0}, {2.0, 0.0, 3.0, 0.0, 4.0, 0.0, 1.7255030280692277601, 0.0}, {0.0, 0.0, 0.0, 1.0, 0.0, -1.0, 0.4236065423969895433, 0.0}, {-1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.44660591677018372657, 0.70768352357515390073}, {0.0, -1.0, -1.0, 1.0, 0.0, 1.0, 0.36023392184473309034, 0.40348623401722113741}, {0.0, 0.0, 0.0796, 0.0, 4.0, 0.0, 1.0284758090288040022, 0.0}, /* more tests */ {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, }; int main() { slong iter; flint_rand_t state; flint_printf("rg...."); fflush(stdout); flint_randinit(state); for (iter = 0; iter < 1000 * arb_test_multiplier(); iter++) { acb_t x, y, z, r1, r2; slong prec1, prec2; prec1 = 2 + n_randint(state, 300); prec2 = 2 + n_randint(state, 300); acb_init(x); acb_init(y); acb_init(z); acb_init(r1); acb_init(r2); if (iter == 0) { slong k; for (k = 0; k < 7; k++) { acb_set_d_d(x, testdata_rg[k][0], testdata_rg[k][1]); acb_set_d_d(y, testdata_rg[k][2], testdata_rg[k][3]); acb_set_d_d(z, testdata_rg[k][4], testdata_rg[k][5]); acb_set_d_d(r2, testdata_rg[k][6], testdata_rg[k][7]); mag_set_d(arb_radref(acb_realref(r2)), 1e-14 * fabs(testdata_rg[k][6])); mag_set_d(arb_radref(acb_imagref(r2)), 1e-14 * fabs(testdata_rg[k][7])); for (prec1 = 16; prec1 <= 256; prec1 *= 2) { acb_elliptic_rg(r1, x, y, z, 0, prec1); if (!acb_overlaps(r1, r2) || acb_rel_accuracy_bits(r1) < prec1 * 0.9 - 10) { flint_printf("FAIL: overlap (testdata rg)\n\n"); flint_printf("prec = %wd, accuracy = %wd\n\n", prec1, acb_rel_accuracy_bits(r1)); flint_printf("x = "); acb_printd(x, 30); flint_printf("\n\n"); flint_printf("y = "); acb_printd(y, 30); flint_printf("\n\n"); flint_printf("z = "); acb_printd(z, 30); flint_printf("\n\n"); flint_printf("r1 = "); acb_printd(r1, 30); flint_printf("\n\n"); flint_printf("r2 = "); acb_printd(r2, 30); flint_printf("\n\n"); flint_abort(); } } } } acb_randtest(x, state, 1 + n_randint(state, 300), 1 + n_randint(state, 30)); acb_randtest(y, state, 1 + n_randint(state, 300), 1 + n_randint(state, 30)); acb_randtest(z, state, 1 + n_randint(state, 300), 1 + n_randint(state, 30)); acb_elliptic_rg(r1, x, y, z, 0, prec1); switch (n_randint(state, 6)) { case 0: acb_elliptic_rg(r2, x, y, z, 0, prec2); break; case 1: acb_elliptic_rg(r2, x, z, y, 0, prec2); break; case 2: acb_elliptic_rg(r2, y, x, z, 0, prec2); break; case 3: acb_elliptic_rg(r2, y, z, x, 0, prec2); break; case 4: acb_elliptic_rg(r2, z, x, y, 0, prec2); break; default: acb_elliptic_rg(r2, z, y, x, 0, prec2); break; } if (!acb_overlaps(r1, r2)) { flint_printf("FAIL: overlap\n\n"); flint_printf("x = "); acb_printd(x, 30); flint_printf("\n\n"); flint_printf("y = "); acb_printd(y, 30); flint_printf("\n\n"); flint_printf("z = "); acb_printd(z, 30); flint_printf("\n\n"); flint_printf("r1 = "); acb_printd(r1, 30); flint_printf("\n\n"); flint_printf("r2 = "); acb_printd(r2, 30); flint_printf("\n\n"); flint_abort(); } acb_clear(x); acb_clear(y); acb_clear(z); acb_clear(r1); acb_clear(r2); } flint_randclear(state); flint_cleanup(); flint_printf("PASS\n"); return EXIT_SUCCESS; }