/* Copyright (C) 2015 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb_hypgeom.h" /* Differential equation for F(a,b,c,y+z): (y+z)(y-1+z) F''(z) + ((y+z)(a+b+1) - c) F'(z) + a b F(z) = 0 Coefficients in the Taylor series are bounded by A * binomial(N+k, k) * nu^k using the Cauchy-Kovalevskaya majorant method. See J. van der Hoeven, "Fast evaluation of holonomic functions near and in regular singularities" */ static void bound(mag_t A, mag_t nu, mag_t N, const acb_t a, const acb_t b, const acb_t c, const acb_t y, const acb_t f0, const acb_t f1) { mag_t M0, M1, t, u; acb_t d; acb_init(d); mag_init(M0); mag_init(M1); mag_init(t); mag_init(u); /* nu = max(1/|y-1|, 1/|y|) = 1/min(|y-1|, |y|) */ acb_get_mag_lower(t, y); acb_sub_ui(d, y, 1, MAG_BITS); acb_get_mag_lower(u, d); mag_min(t, t, u); mag_one(u); mag_div(nu, u, t); /* M0 = 2 nu |ab| */ acb_get_mag(t, a); acb_get_mag(u, b); mag_mul(M0, t, u); mag_mul(M0, M0, nu); mag_mul_2exp_si(M0, M0, 1); /* M1 = nu |a+b+1| + 2|c| */ acb_add(d, a, b, MAG_BITS); acb_add_ui(d, d, 1, MAG_BITS); acb_get_mag(t, d); mag_mul(t, t, nu); acb_get_mag(u, c); mag_mul_2exp_si(u, u, 1); mag_add(M1, t, u); /* N = max(sqrt(2 M0), 2 M1) / nu */ mag_mul_2exp_si(M0, M0, 1); mag_sqrt(M0, M0); mag_mul_2exp_si(M1, M1, 1); mag_max(N, M0, M1); mag_div(N, N, nu); /* A = max(|f0|, |f1| / (nu (N+1)) */ acb_get_mag(t, f0); acb_get_mag(u, f1); mag_div(u, u, nu); mag_div(u, u, N); /* upper bound for dividing by N+1 */ mag_max(A, t, u); acb_clear(d); mag_clear(M0); mag_clear(M1); mag_clear(t); mag_clear(u); } /* F(x) = c0 + c1 x + c2 x^2 + c3 x^3 + [...] F'(x) = c1 + 2 c2 x + 3 c3 x^2 + 4 c4 x^3 + [...] */ static void evaluate_sum(acb_t res, acb_t res1, const acb_t a, const acb_t b, const acb_t c, const acb_t y, const acb_t x, const acb_t f0, const acb_t f1, slong num, slong prec) { acb_t s, s2, w, d, e, xpow, ck, cknext; slong k; acb_init(s); acb_init(s2); acb_init(w); acb_init(d); acb_init(e); acb_init(xpow); acb_init(ck); acb_init(cknext); /* d = (y-1)*y */ acb_sub_ui(d, y, 1, prec); acb_mul(d, d, y, prec); acb_one(xpow); for (k = 0; k < num; k++) { if (k == 0) { acb_set(ck, f0); acb_set(cknext, f1); } else { acb_add_ui(w, b, k-1, prec); acb_mul(w, w, ck, prec); acb_add_ui(e, a, k-1, prec); acb_mul(w, w, e, prec); acb_add(e, a, b, prec); acb_add_ui(e, e, 2*(k+1)-3, prec); acb_mul(e, e, y, prec); acb_sub(e, e, c, prec); acb_sub_ui(e, e, k-1, prec); acb_mul_ui(e, e, k, prec); acb_addmul(w, e, cknext, prec); acb_mul_ui(e, d, k+1, prec); acb_mul_ui(e, e, k, prec); acb_div(w, w, e, prec); acb_neg(w, w); acb_set(ck, cknext); acb_set(cknext, w); } acb_addmul(s, ck, xpow, prec); acb_mul_ui(w, cknext, k+1, prec); acb_addmul(s2, w, xpow, prec); acb_mul(xpow, xpow, x, prec); } acb_set(res, s); acb_set(res1, s2); acb_clear(s); acb_clear(s2); acb_clear(w); acb_clear(d); acb_clear(e); acb_clear(xpow); acb_clear(ck); acb_clear(cknext); } void acb_hypgeom_2f1_continuation(acb_t res, acb_t res1, const acb_t a, const acb_t b, const acb_t c, const acb_t y, const acb_t z, const acb_t f0, const acb_t f1, slong prec) { mag_t A, nu, N, w, err, err1, R, T, goal; acb_t x; slong j, k; mag_init(A); mag_init(nu); mag_init(N); mag_init(err); mag_init(err1); mag_init(w); mag_init(R); mag_init(T); mag_init(goal); acb_init(x); bound(A, nu, N, a, b, c, y, f0, f1); acb_sub(x, z, y, prec); /* |T(k)| <= A * binomial(N+k, k) * nu^k * |x|^k */ acb_get_mag(w, x); mag_mul(w, w, nu); /* w = nu |x| */ mag_mul_2exp_si(goal, A, -prec-2); /* bound for T(0) */ mag_set(T, A); mag_inf(R); for (k = 1; k < 100 * prec; k++) { /* T(k) = T(k) * R(k), R(k) = (N+k)/k * w = (1 + N/k) w */ mag_div_ui(R, N, k); mag_add_ui(R, R, 1); mag_mul(R, R, w); /* T(k) */ mag_mul(T, T, R); if (mag_cmp(T, goal) <= 0 && mag_cmp_2exp_si(R, 0) < 0) break; } /* T(k) [1 + R + R^2 + R^3 + ...] */ mag_geom_series(err, R, 0); mag_mul(err, T, err); /* Now compute T, R for the derivative */ /* Coefficients are A * (k+1) * binomial(N+k+1, k+1) */ mag_add_ui(T, N, 1); mag_mul(T, T, A); mag_inf(R); for (j = 1; j <= k; j++) { mag_add_ui(R, N, k + 1); mag_div_ui(R, R, k); mag_mul(R, R, w); mag_mul(T, T, R); } mag_geom_series(err1, R, 0); mag_mul(err1, T, err1); if (mag_is_inf(err)) { acb_indeterminate(res); acb_indeterminate(res1); } else { evaluate_sum(res, res1, a, b, c, y, x, f0, f1, k, prec); acb_add_error_mag(res, err); acb_add_error_mag(res1, err1); } mag_clear(A); mag_clear(nu); mag_clear(N); mag_clear(err); mag_clear(err1); mag_clear(w); mag_clear(R); mag_clear(T); mag_clear(goal); acb_clear(x); }