/* Copyright (C) 2014-2015, 2021 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "arb_hypgeom.h" #include "acb_hypgeom.h" void acb_hypgeom_bessel_i_asymp_prefactors(acb_t A, acb_t B, acb_t C, const acb_t nu, const acb_t z, int scaled, slong prec) { acb_t t, u; acb_init(t); acb_init(u); /* C = (2 pi z)^(-1/2) */ acb_const_pi(C, prec); acb_mul_2exp_si(C, C, 1); acb_mul(C, C, z, prec); acb_rsqrt(C, C, prec); if (arb_is_positive(acb_imagref(z)) || (arb_is_zero(acb_imagref(z)) && arb_is_negative(acb_realref(z)))) { acb_exp_pi_i(t, nu, prec); acb_mul_onei(t, t); } else if (arb_is_negative(acb_imagref(z)) || (arb_is_zero(acb_imagref(z)) && arb_is_positive(acb_realref(z)))) { acb_neg(t, nu); acb_exp_pi_i(t, t, prec); acb_mul_onei(t, t); acb_neg(t, t); } else { acb_exp_pi_i(t, nu, prec); acb_mul_onei(t, t); acb_neg(u, nu); acb_exp_pi_i(u, u, prec); acb_mul_onei(u, u); acb_neg(u, u); arb_union(acb_realref(t), acb_realref(t), acb_realref(u), prec); arb_union(acb_imagref(t), acb_imagref(t), acb_imagref(u), prec); } if (scaled) { acb_neg(u, z); acb_mul_2exp_si(u, u, 1); acb_exp(u, u, prec); acb_mul(A, t, u, prec); acb_one(B); } else { acb_exp_invexp(B, A, z, prec); acb_mul(A, A, t, prec); } acb_clear(t); acb_clear(u); } void acb_hypgeom_bessel_i_asymp(acb_t res, const acb_t nu, const acb_t z, int scaled, slong prec) { acb_t A1, A2, C, U1, U2, s, t, u; int is_real, is_imag; acb_init(A1); acb_init(A2); acb_init(C); acb_init(U1); acb_init(U2); acb_init(s); acb_init(t); acb_init(u); is_imag = 0; is_real = acb_is_real(nu) && acb_is_real(z) && (acb_is_int(nu) || arb_is_positive(acb_realref(z))); if (!is_real && !scaled && arb_is_zero(acb_realref(z)) && acb_is_int(nu)) { acb_mul_2exp_si(t, nu, -1); if (acb_is_int(t)) is_real = 1; else is_imag = 1; } if (scaled) is_imag = 0; acb_hypgeom_bessel_i_asymp_prefactors(A1, A2, C, nu, z, scaled, prec); /* todo: if Ap ~ 2^a and Am = 2^b and U1 ~ U2 ~ 1, change precision? */ if (!acb_is_finite(A1) || !acb_is_finite(A2) || !acb_is_finite(C)) { acb_indeterminate(res); } else { /* s = 1/2 + nu */ acb_one(s); acb_mul_2exp_si(s, s, -1); acb_add(s, s, nu, prec); /* t = 1 + 2 nu */ acb_mul_2exp_si(t, nu, 1); acb_add_ui(t, t, 1, prec); acb_mul_2exp_si(u, z, 1); acb_hypgeom_u_asymp(U1, s, t, u, -1, prec); acb_neg(u, u); acb_hypgeom_u_asymp(U2, s, t, u, -1, prec); acb_mul(res, A1, U1, prec); acb_addmul(res, A2, U2, prec); acb_mul(res, res, C, prec); if (is_real) arb_zero(acb_imagref(res)); if (is_imag) arb_zero(acb_realref(res)); } acb_clear(A1); acb_clear(A2); acb_clear(C); acb_clear(U1); acb_clear(U2); acb_clear(s); acb_clear(t); acb_clear(u); } void acb_hypgeom_bessel_i_0f1(acb_t res, const acb_t nu, const acb_t z, int scaled, slong prec) { acb_struct b[2]; acb_t w, c, t; if (acb_is_int(nu) && arb_is_negative(acb_realref(nu))) { acb_init(t); acb_neg(t, nu); acb_hypgeom_bessel_i_0f1(res, t, z, scaled, prec); acb_clear(t); return; } acb_init(b + 0); acb_init(b + 1); acb_init(w); acb_init(c); acb_init(t); acb_add_ui(b + 0, nu, 1, prec); acb_one(b + 1); /* (z/2)^nu / gamma(nu+1) */ acb_mul_2exp_si(c, z, -1); acb_pow(c, c, nu, prec); acb_rgamma(t, b + 0, prec); acb_mul(c, t, c, prec); /* z^2/4 */ acb_mul(w, z, z, prec); acb_mul_2exp_si(w, w, -2); acb_hypgeom_pfq_direct(t, NULL, 0, b, 2, w, -1, prec); if (scaled) { acb_neg(w, z); acb_exp(w, w, prec); acb_mul(t, t, w, prec); } acb_mul(res, t, c, prec); acb_clear(b + 0); acb_clear(b + 1); acb_clear(w); acb_clear(c); acb_clear(t); } void acb_hypgeom_bessel_i_nointegration(acb_t res, const acb_t nu, const acb_t z, int scaled, slong prec) { mag_t zmag; mag_init(zmag); acb_get_mag(zmag, z); if (mag_cmp_2exp_si(zmag, 4) < 0 || (mag_cmp_2exp_si(zmag, 64) < 0 && 2 * mag_get_d(zmag) < prec)) acb_hypgeom_bessel_i_0f1(res, nu, z, scaled, prec); else acb_hypgeom_bessel_i_asymp(res, nu, z, scaled, prec); mag_clear(zmag); } void _acb_hypgeom_bessel_i(acb_t res, const acb_t nu, const acb_t z, int scaled, slong prec) { acb_t res2; slong acc, max, t; acb_init(res2); acb_hypgeom_bessel_i_nointegration(res2, nu, z, scaled, prec); acc = acb_rel_accuracy_bits(res2); if (acc < 0.5 * prec) { max = prec; t = acb_rel_accuracy_bits(z); max = FLINT_MIN(max, t); t = acb_rel_accuracy_bits(nu); max = FLINT_MIN(max, t); if (max > 2 && acc < 0.5 * max) { if (acb_is_real(nu) && acb_is_real(z) && arf_cmp_2exp_si(arb_midref(acb_realref(nu)), -1) > 0 && arf_cmpabs_2exp_si(arb_midref(acb_realref(nu)), 60) < 0 && arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), 60) < 0) { arb_hypgeom_bessel_i_integration(acb_realref(res), acb_realref(nu), acb_realref(z), scaled, prec); arb_zero(acb_imagref(res)); if (acb_rel_accuracy_bits(res) > acb_rel_accuracy_bits(res2) || (acb_is_finite(res) && !acb_is_finite(res2))) { acb_swap(res, res2); } } } } acb_swap(res, res2); acb_clear(res2); } void acb_hypgeom_bessel_i(acb_t res, const acb_t nu, const acb_t z, slong prec) { _acb_hypgeom_bessel_i(res, nu, z, 0, prec); } void acb_hypgeom_bessel_i_scaled(acb_t res, const acb_t nu, const acb_t z, slong prec) { _acb_hypgeom_bessel_i(res, nu, z, 1, prec); }