/* Copyright (C) 2017 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb_hypgeom.h" void acb_hypgeom_dilog_transform(acb_t res, const acb_t z, int algorithm, slong prec) { acb_t t, u; acb_init(t); acb_init(u); if (algorithm == 1) { /* Li_2(z) = -Li_2(1/z) - log(-z)^2/2 - pi^2/6, z not in (0,1) */ arf_set_ui_2exp_si(arb_midref(acb_realref(t)), 1, -1); mag_set_ui_2exp_si(arb_radref(acb_realref(t)), 1, -1); if (acb_overlaps(z, t)) { acb_indeterminate(res); } else { acb_inv(t, z, prec); acb_hypgeom_dilog_zero(t, t, prec); acb_neg(u, z); acb_log(u, u, prec); acb_mul(u, u, u, prec); acb_mul_2exp_si(u, u, -1); acb_add(t, t, u, prec); acb_const_pi(u, prec); acb_mul(u, u, u, prec); acb_div_ui(u, u, 6, prec); acb_add(t, t, u, prec); acb_neg(res, t); } } else if (algorithm == 2) { /* Li_2(z) = -Li_2(1-z) - log(1-z) log(z) + pi^2/6 */ if (acb_is_one(z)) { acb_zero(res); } else { acb_sub_ui(t, z, 1, prec); acb_neg(t, t); acb_hypgeom_dilog_zero(u, t, prec); acb_log(t, t, prec); acb_log(res, z, prec); acb_mul(res, res, t, prec); acb_add(res, res, u, prec); } acb_const_pi(t, prec); acb_mul(t, t, t, prec); acb_div_ui(t, t, 6, prec); acb_sub(res, t, res, prec); } else if (algorithm == 3) { /* Li_2(z) = -Li_2(z/(z-1)) - log(1-z)^2/2, z not in (1,inf) */ acb_sub_ui(t, z, 1, prec); if (!arb_is_negative(acb_realref(t))) { acb_indeterminate(res); } else { acb_div(u, z, t, prec); acb_hypgeom_dilog_zero(u, u, prec); acb_neg(t, t); acb_log(t, t, prec); acb_mul(t, t, t, prec); acb_mul_2exp_si(t, t, -1); acb_add(t, t, u, prec); acb_neg(res, t); } } else if (algorithm == 4) { /* Li_2(z) = Li_2(1/(1-z)) + log(1-z) [log(1-z)/2 - log(-z)] - pi^2/6 */ acb_sub_ui(t, z, 1, prec); acb_neg(t, t); acb_inv(u, t, prec); acb_hypgeom_dilog_zero(u, u, prec); acb_log(t, t, prec); acb_neg(res, z); acb_log(res, res, prec); acb_mul_2exp_si(res, res, 1); acb_sub(res, t, res, prec); acb_mul_2exp_si(res, res, -1); acb_addmul(u, res, t, prec); acb_const_pi(t, prec); acb_mul(t, t, t, prec); acb_div_ui(t, t, 6, prec); acb_sub(res, u, t, prec); } else if (algorithm >= 5 && algorithm <= 7) { if (arb_contains_zero(acb_imagref(z))) { acb_indeterminate(res); } else { acb_t a; acb_init(a); if (algorithm == 5) { acb_onei(a); /* Li_2(i) = -pi^2/48 + C i */ arb_const_catalan(acb_imagref(u), prec); arb_const_pi(acb_realref(u), prec); arb_mul(acb_realref(u), acb_realref(u), acb_realref(u), prec); arb_div_si(acb_realref(u), acb_realref(u), -48, prec); } else if (algorithm == 6) { /* Li_2((1+i)/2) = (5 pi^2 / 96 - log(2)^2/8) + (C - pi log(2) / 8) i */ arb_t t; arb_init(t); acb_set_d_d(a, 0.5, 0.5); arb_const_pi(t, prec); arb_const_log2(acb_imagref(u), prec); arb_mul(acb_realref(u), acb_imagref(u), acb_imagref(u), prec); arb_mul(acb_imagref(u), acb_imagref(u), t, prec); acb_mul_2exp_si(u, u, -3); arb_mul(t, t, t, prec); arb_mul_ui(t, t, 5, prec); arb_div_ui(t, t, 96, prec); arb_sub(acb_realref(u), t, acb_realref(u), prec); arb_const_catalan(t, prec); arb_sub(acb_imagref(u), t, acb_imagref(u), prec); arb_clear(t); } else { /* Li_2(1+i) = pi^2/16 + (C + pi log(2)/4) i */ arb_t t; arb_init(t); acb_set_d_d(a, 1.0, 1.0); arb_const_pi(acb_realref(u), prec); arb_mul_2exp_si(acb_realref(u), acb_realref(u), -2); arb_const_log2(t, prec); arb_mul(acb_imagref(u), acb_realref(u), t, prec); arb_const_catalan(t, prec); arb_add(acb_imagref(u), acb_imagref(u), t, prec); arb_mul(acb_realref(u), acb_realref(u), acb_realref(u), prec); arb_clear(t); } if (arf_sgn(arb_midref(acb_imagref(z))) < 0) { acb_conj(a, a); acb_conj(u, u); } acb_hypgeom_dilog_bitburst(res, t, z, prec); acb_add(res, res, u, prec); acb_hypgeom_dilog_continuation(t, a, t, prec); acb_add(res, res, t, prec); acb_clear(a); } } else { flint_printf("unknown algorithm\n"); flint_abort(); } acb_clear(t); acb_clear(u); }