/* Copyright (C) 2015 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "arb_hypgeom.h" #include "acb_hypgeom.h" void acb_hypgeom_m_asymp(acb_t res, const acb_t a, const acb_t b, const acb_t z, int regularized, slong prec) { acb_t t, u, v, c; acb_init(t); acb_init(u); acb_init(v); acb_init(c); acb_sub(c, b, a, prec); acb_neg(v, z); acb_hypgeom_u_asymp(t, a, b, z, -1, prec); acb_hypgeom_u_asymp(u, c, b, v, -1, prec); /* gamma(b-a) */ acb_rgamma(v, c, prec); acb_mul(t, t, v, prec); /* z^(a-b) */ acb_neg(c, c); acb_pow(v, z, c, prec); acb_mul(u, u, v, prec); /* gamma(a) */ acb_rgamma(v, a, prec); acb_mul(u, u, v, prec); /* exp(z) */ acb_exp(v, z, prec); acb_mul(u, u, v, prec); /* (-z)^(-a) */ acb_neg(c, a); acb_neg(v, z); acb_pow(v, v, c, prec); acb_mul(t, t, v, prec); acb_add(t, t, u, prec); if (!regularized) { acb_gamma(v, b, prec); acb_mul(t, t, v, prec); } if (acb_is_real(a) && acb_is_real(b) && acb_is_real(z)) { arb_zero(acb_imagref(t)); } acb_swap(res, t); acb_clear(t); acb_clear(u); acb_clear(v); acb_clear(c); } void _acb_hypgeom_m_1f1(acb_t res, const acb_t a, const acb_t b, const acb_t z, int regularized, slong prec, slong gamma_prec, int kummer) { if (regularized) { /* Remove singularity */ if (acb_is_int(b) && arb_is_nonpositive(acb_realref(b)) && arf_cmpabs_2exp_si(arb_midref(acb_realref(b)), 30) < 0) { acb_t c, d, t, u; slong n; n = arf_get_si(arb_midref(acb_realref(b)), ARF_RND_DOWN); acb_init(c); acb_init(d); acb_init(t); acb_init(u); acb_sub(c, a, b, prec); acb_add_ui(c, c, 1, prec); acb_neg(d, b); acb_add_ui(d, d, 2, prec); _acb_hypgeom_m_1f1(t, c, d, z, 0, prec, gamma_prec, kummer); acb_pow_ui(u, z, 1 - n, prec); acb_mul(t, t, u, prec); acb_rising_ui(u, a, 1 - n, prec); acb_mul(t, t, u, prec); arb_fac_ui(acb_realref(u), 1 - n, prec); acb_div_arb(res, t, acb_realref(u), prec); acb_clear(c); acb_clear(d); acb_clear(t); acb_clear(u); } else { acb_t t; acb_init(t); acb_rgamma(t, b, gamma_prec); _acb_hypgeom_m_1f1(res, a, b, z, 0, prec, gamma_prec, kummer); acb_mul(res, res, t, prec); acb_clear(t); } return; } /* Kummer's transformation */ if (kummer) { acb_t u, v; acb_init(u); acb_init(v); acb_sub(u, b, a, prec); acb_neg(v, z); _acb_hypgeom_m_1f1(u, u, b, v, regularized, prec, gamma_prec, 0); acb_exp(v, z, prec); acb_mul(res, u, v, prec); acb_clear(u); acb_clear(v); return; } if (acb_is_one(a)) { acb_hypgeom_pfq_direct(res, NULL, 0, b, 1, z, -1, prec); } else { acb_struct c[3]; c[0] = *a; c[1] = *b; acb_init(c + 2); acb_one(c + 2); acb_hypgeom_pfq_direct(res, c, 1, c + 1, 2, z, -1, prec); acb_clear(c + 2); } } void acb_hypgeom_m_1f1(acb_t res, const acb_t a, const acb_t b, const acb_t z, int regularized, slong prec) { if (arf_sgn(arb_midref(acb_realref(z))) >= 0 || (acb_is_int(a) && arb_is_nonpositive(acb_realref(a)))) { _acb_hypgeom_m_1f1(res, a, b, z, regularized, prec, prec, 0); } else { _acb_hypgeom_m_1f1(res, a, b, z, regularized, prec, prec, 1); } } static double hypotmx(double x, double y) { if (x > 0.0 && x > 1e6 * fabs(y)) return y * y / (2.0 * x); else return sqrt(x * x + y * y) - x; } void acb_hypgeom_m_choose(int * asymp, int * kummer, slong * wp, const acb_t a, const acb_t b, const acb_t z, int regularized, slong prec) { double x, y, t, cancellation; double input_accuracy, direct_accuracy, asymp_accuracy; slong m = WORD_MAX; slong n = WORD_MAX; if (acb_is_int(a) && arf_cmpabs_2exp_si(arb_midref(acb_realref(a)), 30) < 0) { m = arf_get_si(arb_midref(acb_realref(a)), ARF_RND_DOWN); } if (acb_is_int(b) && arf_cmpabs_2exp_si(arb_midref(acb_realref(b)), 30) < 0) { n = arf_get_si(arb_midref(acb_realref(b)), ARF_RND_DOWN); } *asymp = 0; *kummer = 0; *wp = prec; /* The 1F1 series terminates. */ /* TODO: for large m, estimate extra precision here. */ if (m <= 0 && m < n && m > -10 * prec && (n > 0 || !regularized)) { *asymp = 0; return; } /* The 1F1 series terminates with the Kummer transform. */ /* TODO: for large m, estimate extra precision here. */ if (m >= 1 && n >= 1 && m < 0.1 * prec && n < 0.1 * prec && n <= m) { *asymp = 0; *kummer = 1; return; } input_accuracy = acb_rel_one_accuracy_bits(z); t = acb_rel_one_accuracy_bits(a); input_accuracy = FLINT_MIN(input_accuracy, t); t = acb_rel_one_accuracy_bits(b); input_accuracy = FLINT_MIN(input_accuracy, t); input_accuracy = FLINT_MAX(input_accuracy, 0.0); /* From here we ignore the values of a, b. Taking them into account is a possible future improvement... */ /* Tiny |z|. */ if ((arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), 2) < 0 && arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), 2) < 0)) { *asymp = 0; *wp = FLINT_MAX(2, FLINT_MIN(input_accuracy + 20, prec)); return; } /* Huge |z|. */ if ((arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), 64) > 0 || arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), 64) > 0)) { *asymp = 1; *wp = FLINT_MAX(2, FLINT_MIN(input_accuracy + 20, prec)); return; } x = arf_get_d(arb_midref(acb_realref(z)), ARF_RND_DOWN); y = arf_get_d(arb_midref(acb_imagref(z)), ARF_RND_DOWN); asymp_accuracy = sqrt(x * x + y * y) * 1.44269504088896 - 5.0; /* The Kummer transformation gives less cancellation with the 1F1 series. */ if (x < 0.0) { *kummer = 1; x = -x; } if (asymp_accuracy >= prec) { *asymp = 1; *wp = FLINT_MAX(2, FLINT_MIN(input_accuracy + 20, prec)); return; } cancellation = hypotmx(x, y) * 1.44269504088896; direct_accuracy = input_accuracy - cancellation; if (direct_accuracy > asymp_accuracy) { *asymp = 0; *wp = FLINT_MAX(2, FLINT_MIN(input_accuracy + 20, prec + cancellation)); } else { *asymp = 1; *wp = FLINT_MAX(2, FLINT_MIN(input_accuracy + 20, prec)); } } void acb_hypgeom_m_nointegration(acb_t res, const acb_t a, const acb_t b, const acb_t z, int regularized, slong prec) { int asymp, kummer; slong wp; acb_hypgeom_m_choose(&asymp, &kummer, &wp, a, b, z, regularized, prec); if (asymp) { acb_hypgeom_m_asymp(res, a, b, z, regularized, wp); } else { _acb_hypgeom_m_1f1(res, a, b, z, regularized, wp, FLINT_MIN(wp, prec), kummer); } acb_set_round(res, res, prec); } void acb_hypgeom_m(acb_t res, const acb_t a, const acb_t b, const acb_t z, int regularized, slong prec) { acb_t res2; slong acc, max, t; acb_init(res2); acb_hypgeom_m_nointegration(res2, a, b, z, regularized, prec); acc = acb_rel_accuracy_bits(res2); if (acc < 0.5 * prec) { max = prec; t = acb_rel_accuracy_bits(z); max = FLINT_MIN(max, t); t = acb_rel_accuracy_bits(a); max = FLINT_MIN(max, t); t = acb_rel_accuracy_bits(b); max = FLINT_MIN(max, t); if (max > 2 && acc < 0.5 * max) { if (acb_is_real(a) && acb_is_real(b) && acb_is_real(z) && arf_cmpabs_2exp_si(arb_midref(acb_realref(a)), 60) < 0 && arf_cmpabs_2exp_si(arb_midref(acb_realref(b)), 60) < 0 && arf_cmpabs_2exp_si(arb_midref(acb_realref(z)), 60) < 0) { arb_hypgeom_1f1_integration(acb_realref(res), acb_realref(a), acb_realref(b), acb_realref(z), regularized, prec); arb_zero(acb_imagref(res)); if (acb_rel_accuracy_bits(res) > acb_rel_accuracy_bits(res2) || (acb_is_finite(res) && !acb_is_finite(res2))) { acb_swap(res, res2); } } } } acb_swap(res, res2); acb_clear(res2); } void acb_hypgeom_1f1(acb_t res, const acb_t a, const acb_t b, const acb_t z, int regularized, slong prec) { acb_hypgeom_m(res, a, b, z, regularized, prec); }