/* Copyright (C) 2015 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb_hypgeom.h" /* [S(k+1)] = [ R(k) 0 ] [S(k)] [T(k+1)] [ 1 1 ] [T(k)] [S(k+1)] = [ P(k) / Q(k) 0 ] [S(k)] [T(k+1)] [ 1 1 ] [T(k)] 1 [ P(k) ] ---- [ ] Q(k) [ Q(k) Q(k) ] [[A2 0] [B2 C2]] . [[A1 0] [B1 C1]] = [[A1 A2 0] [A1 B2 + B1 C2 C1 C2] A1 B2 + B1 B2 = B2 (A1 + B1) -- use to save time? */ static void factor(acb_t A, acb_t tmp, acb_srcptr a, slong p, const acb_t z, slong k, slong prec) { slong i; if (p == 0) { if (z == NULL) acb_one(A); else acb_set(A, z); } else { acb_add_ui(A, a, k, prec); for (i = 1; i < p; i++) { acb_add_ui(tmp, a + i, k, prec); acb_mul(A, A, tmp, prec); } if (z != NULL) acb_mul(A, A, z, prec); } } static void bsplit(acb_t A1, acb_t B1, acb_t C1, acb_srcptr a, slong p, acb_srcptr b, slong q, const acb_t z, slong aa, slong bb, slong prec, int invz) { if (bb - aa == 1) { factor(A1, B1, a, p, invz ? NULL : z, aa, prec); factor(C1, B1, b, q, invz ? z : NULL, aa, prec); /* acb_set(B1, C1); but we skip this */ } else { slong m; acb_t A2, B2, C2; acb_init(A2); acb_init(B2); acb_init(C2); m = aa + (bb - aa) / 2; bsplit(A1, B1, C1, a, p, b, q, z, aa, m, prec, invz); bsplit(A2, B2, C2, a, p, b, q, z, m, bb, prec, invz); if (bb - m == 1) /* B2 = C2 */ { if (m - aa == 1) acb_add(B2, A1, C1, prec); else acb_add(B2, A1, B1, prec); acb_mul(B1, B2, C2, prec); } else { if (m - aa == 1) acb_mul(B1, C1, C2, prec); else acb_mul(B1, B1, C2, prec); acb_addmul(B1, A1, B2, prec); } acb_mul(A1, A1, A2, prec); acb_mul(C1, C1, C2, prec); acb_clear(A2); acb_clear(B2); acb_clear(C2); } } void acb_hypgeom_pfq_sum_bs(acb_t s, acb_t t, acb_srcptr a, slong p, acb_srcptr b, slong q, const acb_t z, slong n, slong prec) { acb_t u, v, w, tmp; if (n < 4) { acb_hypgeom_pfq_sum_forward(s, t, a, p, b, q, z, n, prec); return; } acb_init(u); acb_init(v); acb_init(w); acb_init(tmp); /* we compute to n-1 instead of n to avoid dividing by 0 in the denominator when computing a hypergeometric polynomial that terminates right before a pole */ bsplit(u, v, w, a, p, b, q, z, 0, n - 1, prec, 0); acb_add(s, u, v, prec); /* s = s + t */ acb_div(s, s, w, prec); /* split off last factor */ factor(t, tmp, a, p, z, n - 1, prec); acb_mul(u, u, t, prec); factor(t, tmp, b, q, NULL, n - 1, prec); acb_mul(w, w, t, prec); acb_div(t, u, w, prec); acb_clear(u); acb_clear(v); acb_clear(w); acb_clear(tmp); } void acb_hypgeom_pfq_sum_bs_invz(acb_t s, acb_t t, acb_srcptr a, slong p, acb_srcptr b, slong q, const acb_t z, slong n, slong prec) { acb_t u, v, w, tmp; if (n < 4) { acb_init(u); acb_inv(u, z, prec); acb_hypgeom_pfq_sum_forward(s, t, a, p, b, q, u, n, prec); acb_clear(u); return; } acb_init(u); acb_init(v); acb_init(w); acb_init(tmp); /* we compute to n-1 instead of n to avoid dividing by 0 in the denominator when computing a hypergeometric polynomial that terminates right before a pole */ bsplit(u, v, w, a, p, b, q, z, 0, n - 1, prec, 1); acb_add(s, u, v, prec); /* s = s + t */ acb_div(s, s, w, prec); /* split off last factor */ factor(t, tmp, a, p, NULL, n - 1, prec); acb_mul(u, u, t, prec); factor(t, tmp, b, q, z, n - 1, prec); acb_mul(w, w, t, prec); acb_div(t, u, w, prec); acb_clear(u); acb_clear(v); acb_clear(w); acb_clear(tmp); }