/* Copyright (C) 2014 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb_hypgeom.h" slong acb_hypgeom_pfq_choose_n_max(acb_srcptr a, slong p, acb_srcptr b, slong q, const acb_t z, slong prec, slong n_max); int acb_hypgeom_u_asymp_determine_region(const mag_t r, const mag_t zlo, const acb_t z) { int R; mag_t u, zre, zim; mag_init(u); mag_init(zre); mag_init(zim); /* lower bounds for |re(z)|, |im(z)|, |z| */ arb_get_mag_lower(zre, acb_realref(z)); arb_get_mag_lower(zim, acb_imagref(z)); R = 0; if (mag_cmp(zlo, r) >= 0) { int znonneg = arb_is_nonnegative(acb_realref(z)); if (znonneg && mag_cmp(zre, r) >= 0) { R = 1; } else if (mag_cmp(zim, r) >= 0 || znonneg) { R = 2; } else { mag_mul_2exp_si(u, r, 1); if (mag_cmp(zlo, u) >= 0) R = 3; } } mag_clear(u); mag_clear(zre); mag_clear(zim); return R; } /* computes the factors that are independent of n (all are upper bounds) */ void acb_hypgeom_u_asymp_bound_factors(int * R, mag_t alpha, mag_t nu, mag_t sigma, mag_t rho, mag_t zinv, const acb_t a, const acb_t b, const acb_t z) { mag_t r, u, zlo, sigma_prime; acb_t t; mag_init(r); mag_init(u); mag_init(zlo); mag_init(sigma_prime); acb_init(t); /* upper bound for 1/|z| */ acb_get_mag_lower(zlo, z); mag_inv(zinv, zlo); /* upper bound for r = |b - 2a| */ acb_mul_2exp_si(t, a, 1); acb_sub(t, b, t, MAG_BITS); acb_get_mag(r, t); /* determine region */ *R = acb_hypgeom_u_asymp_determine_region(r, zlo, z); if (*R == 0) { mag_inf(alpha); mag_inf(nu); mag_inf(sigma); mag_inf(rho); } else { /* sigma = |(b-2a)/z| */ mag_mul(sigma, r, zinv); /* nu = (1/2 + 1/2 sqrt(1-4 sigma^2))^(-1/2) <= 1 + 2 sigma^2 */ if (mag_cmp_2exp_si(sigma, -1) <= 0) { mag_mul(nu, sigma, sigma); mag_mul_2exp_si(nu, nu, 1); mag_one(u); mag_add(nu, nu, u); } else { mag_inf(nu); } /* modified sigma for alpha, beta, rho when in R3 */ if (*R == 3) mag_mul(sigma_prime, sigma, nu); else mag_set(sigma_prime, sigma); /* alpha = 1/(1-sigma') */ mag_one(alpha); mag_sub_lower(alpha, alpha, sigma_prime); mag_one(u); mag_div(alpha, u, alpha); /* rho = |2a^2-2ab+b|/2 + sigma'*(1+sigma'/4)/(1-sigma')^2 */ mag_mul_2exp_si(rho, sigma_prime, -2); mag_one(u); mag_add(rho, rho, u); mag_mul(rho, rho, sigma_prime); mag_mul(rho, rho, alpha); mag_mul(rho, rho, alpha); acb_sub(t, a, b, MAG_BITS); acb_mul(t, t, a, MAG_BITS); acb_mul_2exp_si(t, t, 1); acb_add(t, t, b, MAG_BITS); acb_get_mag(u, t); mag_mul_2exp_si(u, u, -1); mag_add(rho, rho, u); } mag_clear(r); mag_clear(u); mag_clear(zlo); mag_clear(sigma_prime); acb_clear(t); } void acb_hypgeom_mag_chi(mag_t chi, ulong n) { mag_t p, q; ulong k; mag_init(p); mag_init(q); if (n % 2 == 0) { mag_one(p); mag_one(q); } else { /* upper bound for pi/2 */ mag_set_ui_2exp_si(p, 843314857, -28); mag_one(q); } for (k = n; k >= 2; k -= 2) { mag_mul_ui(p, p, k); mag_mul_ui_lower(q, q, k - 1); } mag_div(chi, p, q); mag_clear(p); mag_clear(q); } static void acb_hypgeom_mag_Cn(mag_t Cn, int R, const mag_t nu, const mag_t sigma, ulong n) { if (R == 1) { mag_one(Cn); } else { acb_hypgeom_mag_chi(Cn, n); if (R == 3) { mag_t tmp; mag_init(tmp); mag_mul(tmp, nu, nu); mag_mul(tmp, tmp, sigma); if (n != 1) mag_mul_ui(tmp, tmp, n); mag_add(Cn, Cn, tmp); mag_pow_ui(tmp, nu, n); mag_mul(Cn, Cn, tmp); mag_clear(tmp); } } } static int acb_is_nonpositive_int(const acb_t x) { return acb_is_int(x) && arf_sgn(arb_midref(acb_realref(x))) <= 0; } void acb_hypgeom_u_asymp(acb_t res, const acb_t a, const acb_t b, const acb_t z, slong n, slong prec) { acb_struct aa[3]; acb_t s, t, w, winv; int R, p, q, is_real, is_terminating; slong n_terminating; if (!acb_is_finite(a) || !acb_is_finite(b) || !acb_is_finite(z)) { acb_indeterminate(res); return; } acb_init(aa); acb_init(aa + 1); acb_init(aa + 2); acb_init(s); acb_init(t); acb_init(w); acb_init(winv); is_terminating = 0; n_terminating = WORD_MAX; /* special case, for incomplete gamma [todo: also when they happen to be exact and with difference 1...] */ if (a == b) { acb_set(aa, a); p = 1; q = 0; } else { acb_set(aa, a); acb_sub(aa + 1, a, b, prec); acb_add_ui(aa + 1, aa + 1, 1, prec); acb_one(aa + 2); p = 2; q = 1; } if (acb_is_nonpositive_int(aa)) { is_terminating = 1; if (arf_cmpabs_ui(arb_midref(acb_realref(aa)), prec) < 0) n_terminating = 1 - arf_get_si(arb_midref(acb_realref(aa)), ARF_RND_DOWN); } if (p == 2 && acb_is_nonpositive_int(aa + 1)) { is_terminating = 1; if (arf_cmpabs_ui(arb_midref(acb_realref(aa + 1)), n_terminating) < 0) n_terminating = 1 - arf_get_si(arb_midref(acb_realref(aa + 1)), ARF_RND_DOWN); } acb_neg(w, z); acb_inv(w, w, prec); acb_neg(winv, z); /* low degree polynomial -- no need to try to terminate sooner */ if (is_terminating && n_terminating < 8) { acb_hypgeom_pfq_sum_invz(s, t, aa, p, aa + p, q, w, winv, n_terminating, prec); acb_set(res, s); } else { mag_t C1, Cn, alpha, nu, sigma, rho, zinv, tmp, err; mag_init(C1); mag_init(Cn); mag_init(alpha); mag_init(nu); mag_init(sigma); mag_init(rho); mag_init(zinv); mag_init(tmp); mag_init(err); acb_hypgeom_u_asymp_bound_factors(&R, alpha, nu, sigma, rho, zinv, a, b, z); is_real = acb_is_real(a) && acb_is_real(b) && acb_is_real(z) && (is_terminating || arb_is_positive(acb_realref(z))); if (R == 0) { /* if R == 0, the error bound is infinite unless terminating */ if (is_terminating && n_terminating < prec) { acb_hypgeom_pfq_sum_invz(s, t, aa, p, aa + p, q, w, winv, n_terminating, prec); acb_set(res, s); } else { acb_indeterminate(res); } } else { /* C1 */ acb_hypgeom_mag_Cn(C1, R, nu, sigma, 1); /* err = 2 * alpha * exp(...) */ mag_mul(tmp, C1, rho); mag_mul(tmp, tmp, alpha); mag_mul(tmp, tmp, zinv); mag_mul_2exp_si(tmp, tmp, 1); mag_exp(err, tmp); mag_mul(err, err, alpha); mag_mul_2exp_si(err, err, 1); /* choose n automatically */ if (n < 0) { slong moreprec; /* take err into account when finding truncation point */ /* we should take Cn into account as well, but this depends on n which is to be determined; it's easier to look only at exp(...) which should be larger anyway */ if (mag_cmp_2exp_si(err, 10 * prec) > 0) moreprec = 10 * prec; else if (mag_cmp_2exp_si(err, 0) < 0) moreprec = 0; else moreprec = MAG_EXP(err); n = acb_hypgeom_pfq_choose_n_max(aa, p, aa + p, q, w, prec + moreprec, FLINT_MIN(WORD_MAX / 2, 50 + 10.0 * prec)); } acb_hypgeom_pfq_sum_invz(s, t, aa, p, aa + p, q, w, winv, n, prec); /* add error bound, if not terminating */ if (!(is_terminating && n == n_terminating)) { acb_hypgeom_mag_Cn(Cn, R, nu, sigma, n); mag_mul(err, err, Cn); /* nth term * factor */ acb_get_mag(tmp, t); mag_mul(err, err, tmp); if (is_real) arb_add_error_mag(acb_realref(s), err); else acb_add_error_mag(s, err); } acb_set(res, s); } mag_clear(C1); mag_clear(Cn); mag_clear(alpha); mag_clear(nu); mag_clear(sigma); mag_clear(rho); mag_clear(zinv); mag_clear(tmp); mag_clear(err); } acb_clear(aa); acb_clear(aa + 1); acb_clear(aa + 2); acb_clear(s); acb_clear(t); acb_clear(w); acb_clear(winv); }