/* Copyright (C) 2018 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb_mat.h" static void acb_approx_mul(acb_t res, const acb_t x, const acb_t y, slong prec) { arf_complex_mul(arb_midref(acb_realref(res)), arb_midref(acb_imagref(res)), arb_midref(acb_realref(x)), arb_midref(acb_imagref(x)), arb_midref(acb_realref(y)), arb_midref(acb_imagref(y)), prec, ARB_RND); } /* note: the tmp variable t should have zero radius */ static void acb_approx_div(acb_t z, const acb_t x, const acb_t y, acb_t t, slong prec) { arf_set(arb_midref(acb_realref(t)), arb_midref(acb_realref(y))); arf_set(arb_midref(acb_imagref(t)), arb_midref(acb_imagref(y))); acb_inv(t, t, prec); mag_zero(arb_radref(acb_realref(t))); mag_zero(arb_radref(acb_imagref(t))); acb_approx_mul(z, x, t, prec); } void acb_mat_approx_solve_tril_classical(acb_mat_t X, const acb_mat_t L, const acb_mat_t B, int unit, slong prec) { slong i, j, n, m; acb_ptr tmp; acb_t s, t; n = L->r; m = B->c; acb_init(s); acb_init(t); tmp = flint_malloc(sizeof(acb_struct) * n); for (i = 0; i < m; i++) { for (j = 0; j < n; j++) tmp[j] = *acb_mat_entry(X, j, i); for (j = 0; j < n; j++) { acb_approx_dot(s, acb_mat_entry(B, j, i), 1, L->rows[j], 1, tmp, 1, j, prec); if (!unit) acb_approx_div(tmp + j, s, acb_mat_entry(L, j, j), t, prec); else acb_swap(tmp + j, s); } for (j = 0; j < n; j++) *acb_mat_entry(X, j, i) = tmp[j]; } flint_free(tmp); acb_clear(s); acb_clear(t); } void acb_mat_approx_solve_tril_recursive(acb_mat_t X, const acb_mat_t L, const acb_mat_t B, int unit, slong prec) { acb_mat_t LA, LC, LD, XX, XY, BX, BY, T; slong r, n, m; n = L->r; m = B->c; r = n / 2; if (n == 0 || m == 0) return; /* Denoting inv(M) by M^, we have: [A 0]^ [X] == [A^ 0 ] [X] == [A^ X] [C D] [Y] == [-D^ C A^ D^] [Y] == [D^ (Y - C A^ X)] */ acb_mat_window_init(LA, L, 0, 0, r, r); acb_mat_window_init(LC, L, r, 0, n, r); acb_mat_window_init(LD, L, r, r, n, n); acb_mat_window_init(BX, B, 0, 0, r, m); acb_mat_window_init(BY, B, r, 0, n, m); acb_mat_window_init(XX, X, 0, 0, r, m); acb_mat_window_init(XY, X, r, 0, n, m); acb_mat_approx_solve_tril(XX, LA, BX, unit, prec); /* acb_mat_submul(XY, BY, LC, XX); */ acb_mat_init(T, LC->r, BX->c); acb_mat_approx_mul(T, LC, XX, prec); acb_mat_sub(XY, BY, T, prec); acb_mat_get_mid(XY, XY); acb_mat_clear(T); acb_mat_approx_solve_tril(XY, LD, XY, unit, prec); acb_mat_window_clear(LA); acb_mat_window_clear(LC); acb_mat_window_clear(LD); acb_mat_window_clear(BX); acb_mat_window_clear(BY); acb_mat_window_clear(XX); acb_mat_window_clear(XY); } void acb_mat_approx_solve_tril(acb_mat_t X, const acb_mat_t L, const acb_mat_t B, int unit, slong prec) { if (B->r < 40 || B->c < 40) acb_mat_approx_solve_tril_classical(X, L, B, unit, prec); else acb_mat_approx_solve_tril_recursive(X, L, B, unit, prec); }