/* Copyright (C) 2018 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb_mat.h" void acb_mat_solve_triu_classical(acb_mat_t X, const acb_mat_t U, const acb_mat_t B, int unit, slong prec) { slong i, j, n, m; acb_ptr tmp; acb_t s; n = U->r; m = B->c; acb_init(s); tmp = flint_malloc(sizeof(acb_struct) * n); for (i = 0; i < m; i++) { for (j = 0; j < n; j++) tmp[j] = *acb_mat_entry(X, j, i); for (j = n - 1; j >= 0; j--) { acb_dot(s, acb_mat_entry(B, j, i), 1, U->rows[j] + j + 1, 1, tmp + j + 1, 1, n - j - 1, prec); if (!unit) acb_div(tmp + j, s, acb_mat_entry(U, j, j), prec); else acb_swap(tmp + j, s); } for (j = 0; j < n; j++) *acb_mat_entry(X, j, i) = tmp[j]; } flint_free(tmp); acb_clear(s); } void acb_mat_solve_triu_recursive(acb_mat_t X, const acb_mat_t U, const acb_mat_t B, int unit, slong prec) { acb_mat_t UA, UB, UD, XX, XY, BX, BY, T; slong r, n, m; n = U->r; m = B->c; r = n / 2; if (n == 0 || m == 0) return; /* Denoting inv(M) by M^, we have: [A B]^ [X] == [A^ (X - B D^ Y)] [0 D] [Y] == [ D^ Y ] */ acb_mat_window_init(UA, U, 0, 0, r, r); acb_mat_window_init(UB, U, 0, r, r, n); acb_mat_window_init(UD, U, r, r, n, n); acb_mat_window_init(BX, B, 0, 0, r, m); acb_mat_window_init(BY, B, r, 0, n, m); acb_mat_window_init(XX, X, 0, 0, r, m); acb_mat_window_init(XY, X, r, 0, n, m); acb_mat_solve_triu(XY, UD, BY, unit, prec); /* acb_mat_submul(XX, BX, UB, XY); */ acb_mat_init(T, UB->r, XY->c); acb_mat_mul(T, UB, XY, prec); acb_mat_sub(XX, BX, T, prec); acb_mat_clear(T); acb_mat_solve_triu(XX, UA, XX, unit, prec); acb_mat_window_clear(UA); acb_mat_window_clear(UB); acb_mat_window_clear(UD); acb_mat_window_clear(BX); acb_mat_window_clear(BY); acb_mat_window_clear(XX); acb_mat_window_clear(XY); } void acb_mat_solve_triu(acb_mat_t X, const acb_mat_t U, const acb_mat_t B, int unit, slong prec) { if (B->r < 40 || B->c < 40) acb_mat_solve_triu_classical(X, U, B, unit, prec); else acb_mat_solve_triu_recursive(X, U, B, unit, prec); }