/* Copyright (C) 2018 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb_mat.h" int main() { slong iter; flint_rand_t state; flint_printf("approx_eig_qr...."); fflush(stdout); flint_randinit(state); /* Test random & DFT matrices */ for (iter = 0; iter < 200 * arb_test_multiplier(); iter++) { acb_mat_t A, L, R; acb_ptr E; acb_t t; mag_t b; slong i, j, n, prec, goal, c0, c1, c2, c3; int wantL, wantR, result, dft; dft = n_randint(state, 2); if (dft) n = n_randint(state, 30); else n = n_randint(state, 15); goal = 2 + n_randint(state, 100); wantL = n_randint(state, 2); wantR = n_randint(state, 2); acb_mat_init(A, n, n); acb_mat_init(L, n, n); acb_mat_init(R, n, n); acb_init(t); mag_init(b); E = _acb_vec_init(n); for (prec = 32; ; prec *= 2) { if (dft) { acb_mat_dft(A, 0, prec); } else { acb_mat_randtest(A, state, 2 + n_randint(state, 200), 5); acb_mat_get_mid(A, A); } acb_mat_approx_eig_qr(E, wantL ? L : NULL, wantR ? R : NULL, A, NULL, 0, prec); if (dft) { /* Verify the known eigenvalues + multiplicities */ c0 = c1 = c2 = c3 = 0; for (i = 0; i < n; i++) { acb_set_d_d(t, 1.0, 0.0); acb_sub(t, t, E + i, prec); acb_get_mag(b, t); c0 += (mag_cmp_2exp_si(b, -goal) < 0); acb_set_d_d(t, -1.0, 0.0); acb_sub(t, t, E + i, prec); acb_get_mag(b, t); c1 += (mag_cmp_2exp_si(b, -goal) < 0); acb_set_d_d(t, 0.0, 1.0); acb_sub(t, t, E + i, prec); acb_get_mag(b, t); c2 += (mag_cmp_2exp_si(b, -goal) < 0); acb_set_d_d(t, 0.0, -1.0); acb_sub(t, t, E + i, prec); acb_get_mag(b, t); c3 += (mag_cmp_2exp_si(b, -goal) < 0); } result = (n == 0 || (c0 == (n+4)/4 && c1 == (n+2)/4 && c2 == (n-1)/4 && c3 == (n+1)/4)); } else { result = 1; } if (result && wantL) { acb_mat_t LA, D; acb_mat_init(LA, n, n); acb_mat_init(D, n, n); /* Check LA - lambda L = 0 */ acb_mat_approx_mul(LA, L, A, prec); for (i = 0; i < n; i++) acb_set(acb_mat_entry(D, i, i), E + i); acb_mat_approx_mul(D, D, L, prec); acb_mat_sub(LA, LA, D, prec); for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { acb_get_mag(b, acb_mat_entry(LA, i, j)); result = result && (mag_cmp_2exp_si(b, -goal) < 0); } } acb_mat_clear(LA); acb_mat_clear(D); } if (result && wantR) { acb_mat_t AR, D; acb_mat_init(AR, n, n); acb_mat_init(D, n, n); /* Check AR - R lambda = 0 */ acb_mat_approx_mul(AR, A, R, prec); for (i = 0; i < n; i++) acb_set(acb_mat_entry(D, i, i), E + i); acb_mat_approx_mul(D, R, D, prec); acb_mat_sub(AR, AR, D, prec); for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { acb_get_mag(b, acb_mat_entry(AR, i, j)); result = result && (mag_cmp_2exp_si(b, -goal) < 0); } } acb_mat_clear(AR); acb_mat_clear(D); } if (result) break; if (prec > 2000) { flint_printf("FAIL (convergence, dft = %d)\n\n", dft); flint_printf("n = %wd\n\n", n); acb_mat_printd(A, 10); flint_printf("\n\n"); for (i = 0; i < n; i++) { acb_printn(E + i, 50, 0); flint_printf("\n"); } flint_printf("\n"); if (wantL) { flint_printf("L = \n"); acb_mat_printd(L, 10); flint_printf("\n\n"); } if (wantR) { flint_printf("R = \n"); acb_mat_printd(R, 10); flint_printf("\n\n"); } flint_abort(); } } acb_mat_clear(A); acb_mat_clear(L); acb_mat_clear(R); _acb_vec_clear(E, n); acb_clear(t); mag_clear(b); } flint_randclear(state); flint_cleanup(); flint_printf("PASS\n"); return EXIT_SUCCESS; }