/* Copyright (C) 2018 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb_mat.h" int main() { slong iter; flint_rand_t state; flint_printf("eig_enclosure_rump...."); fflush(stdout); flint_randinit(state); /* Test random matrices */ for (iter = 0; iter < 1000 * arb_test_multiplier(); iter++) { acb_mat_t A, X, R, AR, J, RJ, Z, Z0; acb_ptr E, F; acb_t b, lambda; slong i, j, h, k, n, iter2, prec, found_eigenvalue; n = 1 + n_randint(state, 7); prec = 2 + n_randint(state, 200); acb_mat_init(A, n, n); acb_mat_init(X, n, n); acb_init(lambda); acb_init(b); E = _acb_vec_init(n); F = _acb_vec_init(n); if (n_randint(state, 2)) { for (i = 0; i < n; i++) acb_randtest(E + i, state, prec, 3); } else { /* Randomly repeat eigenvalues. */ for (i = 0; i < n; i++) { if (i == 0 || n_randint(state, 2)) acb_randtest(E + i, state, prec, 3); else acb_set(E + i, E + n_randint(state, i)); } } if (n_randint(state, 2)) { for (i = 0; i < n; i++) acb_get_mid(E + i, E + i); } acb_mat_randtest_eig(A, state, E, prec); acb_mat_approx_eig_qr(F, NULL, X, A, NULL, 0, prec); /* Perturb F further. */ if (n_randint(state, 4) == 0) { for (i = 0; i < n; i++) { acb_randtest(b, state, prec, 1); acb_mul_2exp_si(b, b, -n_randint(state, prec)); acb_add(F + i, F + i, b, prec); } } /* Perturb X further. */ if (n_randint(state, 10) == 0) { j = n_randint(state, n); for (i = 0; i < n; i++) { acb_randtest(b, state, prec, 1); acb_mul_2exp_si(b, b, -10 - n_randint(state, prec)); acb_add(acb_mat_entry(X, i, j), acb_mat_entry(X, i, j), b, prec); } } /* Test k = 1 */ if (1) { acb_mat_init(R, n, 1); acb_mat_init(AR, n, 1); acb_mat_init(Z, n, 1); acb_mat_init(Z0, n, 1); for (j = 0; j < n; j++) { acb_set(lambda, F + j); for (i = 0; i < n; i++) acb_set(acb_mat_entry(R, i, 0), acb_mat_entry(X, i, j)); acb_mat_eig_enclosure_rump(lambda, NULL, R, A, lambda, R, prec); acb_mat_mul(AR, A, R, prec); acb_mat_neg(Z, AR); acb_mat_scalar_addmul_acb(Z, R, lambda, prec); if (!acb_mat_contains(Z, Z0)) { flint_printf("FAIL: not containing zero!\n\n"); flint_printf("A = \n"); acb_mat_printd(A, 20); flint_printf("\n\n"); flint_printf("R = \n"); acb_mat_printd(R, 20); flint_printf("\n\n"); flint_printf("lambda = \n"); acb_printd(lambda, 20); flint_printf("\n\n"); flint_printf("Z = \n"); acb_mat_printd(Z, 20); flint_printf("\n\n"); flint_printf("E = \n"); for (j = 0; j < n; j++) { acb_printd(E + j, 20); flint_printf("\n"); } flint_abort(); } found_eigenvalue = 0; for (j = 0; j < n; j++) { if (acb_contains(lambda, E + j)) found_eigenvalue++; } if (found_eigenvalue == 0) { flint_printf("FAIL: eigenvalue not found\n\n"); flint_printf("A = \n"); acb_mat_printd(A, 20); flint_printf("\n\n"); flint_printf("R = \n"); acb_mat_printd(R, 20); flint_printf("\n\n"); flint_printf("lambda = \n"); acb_printd(lambda, 20); flint_printf("\n\n"); flint_printf("Z = \n"); acb_mat_printd(Z, 20); flint_printf("\n\n"); flint_printf("E = \n"); for (j = 0; j < n; j++) { acb_printd(E + j, 20); flint_printf("\n"); } flint_abort(); } } acb_mat_clear(R); acb_mat_clear(AR); acb_mat_clear(Z); acb_mat_clear(Z0); } /* Test k > 1 */ for (iter2 = 1; iter2 < n; iter2++) { k = n_randint(state, n + 1); k = FLINT_MAX(k, 2); acb_mat_init(R, n, k); acb_mat_init(AR, n, k); acb_mat_init(Z, n, k); acb_mat_init(Z0, n, k); acb_mat_init(J, k, k); acb_mat_init(RJ, n, k); /* Random selection */ for (h = 0; h < k; h++) { j = n_randint(state, n); if (h == 0 || n_randint(state, 2)) acb_set(lambda, F + j); for (i = 0; i < n; i++) acb_set(acb_mat_entry(R, i, h), acb_mat_entry(X, i, j)); } acb_mat_eig_enclosure_rump(lambda, J, R, A, lambda, R, prec); /* AY = YJ */ acb_mat_mul(AR, A, R, prec); acb_mat_mul(RJ, R, J, prec); acb_mat_sub(Z, AR, RJ, prec); if (!acb_mat_contains(Z, Z0)) { flint_printf("FAIL: not containing zero! (k = %wd, prec = %wd)\n\n", k, prec); flint_printf("A = \n"); acb_mat_printd(A, 20); flint_printf("\n\n"); flint_printf("R = \n"); acb_mat_printd(R, 20); flint_printf("\n\n"); flint_printf("lambda = \n"); acb_printd(lambda, 20); flint_printf("\n\n"); flint_printf("J = \n"); acb_mat_printd(J, 20); flint_printf("\n\n"); flint_printf("Z = \n"); acb_mat_printd(Z, 20); flint_printf("\n\n"); flint_printf("E = \n"); for (j = 0; j < n; j++) { acb_printd(E + j, 20); flint_printf("\n"); } flint_abort(); } found_eigenvalue = 0; for (j = 0; j < n; j++) { if (acb_contains(lambda, E + j)) found_eigenvalue++; } if (found_eigenvalue < k) { flint_printf("FAIL: eigenvalue not found (k = %wd, found = %wd)\n\n", k, found_eigenvalue); flint_printf("A = \n"); acb_mat_printd(A, 20); flint_printf("\n\n"); flint_printf("R = \n"); acb_mat_printd(R, 20); flint_printf("\n\n"); flint_printf("lambda = \n"); acb_printd(lambda, 20); flint_printf("\n\n"); flint_printf("Z = \n"); acb_mat_printd(Z, 20); flint_printf("\n\n"); flint_printf("E = \n"); for (j = 0; j < n; j++) { acb_printd(E + j, 20); flint_printf("\n"); } flint_abort(); } acb_mat_clear(R); acb_mat_clear(AR); acb_mat_clear(Z); acb_mat_clear(Z0); acb_mat_clear(J); acb_mat_clear(RJ); } acb_mat_clear(A); acb_mat_clear(X); acb_clear(lambda); acb_clear(b); _acb_vec_clear(E, n); _acb_vec_clear(F, n); } flint_randclear(state); flint_cleanup(); flint_printf("PASS\n"); return EXIT_SUCCESS; }