/* Copyright (C) 2012 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb_mat.h" int fmpq_mat_is_invertible(const fmpq_mat_t A) { int r; fmpq_t t; fmpq_init(t); fmpq_mat_det(t, A); r = !fmpq_is_zero(t); fmpq_clear(t); return r; } int main() { slong iter; flint_rand_t state; flint_printf("lu_recursive...."); fflush(stdout); flint_randinit(state); /* Dummy test with rectangular matrices. Rectangular matrices are not actually supported (the output may be bogus), but the algorithm should at least not crash. */ for (iter = 0; iter < 1000 * arb_test_multiplier(); iter++) { slong m, n, prec; slong *perm; acb_mat_t A, LU; n = n_randint(state, 20); m = n_randint(state, 20); prec = 2 + n_randint(state, 200); acb_mat_init(A, n, m); acb_mat_init(LU, n, m); perm = _perm_init(n); acb_mat_randtest(A, state, prec, 10); if (n_randint(state, 2)) { acb_mat_lu_recursive(perm, LU, A, prec); } else { acb_mat_set(LU, A); acb_mat_lu_recursive(perm, LU, LU, prec); } acb_mat_clear(A); acb_mat_clear(LU); _perm_clear(perm); } for (iter = 0; iter < 2000 * arb_test_multiplier(); iter++) { fmpq_mat_t Q; acb_mat_t A, LU, P, L, U, T; slong i, j, n, qbits, prec, *perm; int q_invertible, r_invertible; n = n_randint(state, 20); qbits = 1 + n_randint(state, 100); prec = 2 + n_randint(state, 202); fmpq_mat_init(Q, n, n); acb_mat_init(A, n, n); acb_mat_init(LU, n, n); acb_mat_init(P, n, n); acb_mat_init(L, n, n); acb_mat_init(U, n, n); acb_mat_init(T, n, n); perm = _perm_init(n); fmpq_mat_randtest(Q, state, qbits); q_invertible = fmpq_mat_is_invertible(Q); if (!q_invertible) { acb_mat_set_fmpq_mat(A, Q, prec); r_invertible = acb_mat_lu_recursive(perm, LU, A, prec); if (r_invertible) { flint_printf("FAIL: matrix is singular over Q but not over R\n"); flint_printf("n = %wd, prec = %wd\n", n, prec); flint_printf("\n"); flint_printf("Q = \n"); fmpq_mat_print(Q); flint_printf("\n\n"); flint_printf("A = \n"); acb_mat_printd(A, 15); flint_printf("\n\n"); flint_printf("LU = \n"); acb_mat_printd(LU, 15); flint_printf("\n\n"); } } else { /* now this must converge */ while (1) { acb_mat_set_fmpq_mat(A, Q, prec); r_invertible = acb_mat_lu_recursive(perm, LU, A, prec); if (r_invertible) { break; } else { if (prec > 10000) { flint_printf("FAIL: failed to converge at 10000 bits\n"); flint_abort(); } prec *= 2; } } acb_mat_one(L); for (i = 0; i < n; i++) for (j = 0; j < i; j++) acb_set(acb_mat_entry(L, i, j), acb_mat_entry(LU, i, j)); for (i = 0; i < n; i++) for (j = i; j < n; j++) acb_set(acb_mat_entry(U, i, j), acb_mat_entry(LU, i, j)); for (i = 0; i < n; i++) acb_one(acb_mat_entry(P, perm[i], i)); acb_mat_mul(T, P, L, prec); acb_mat_mul(T, T, U, prec); if (!acb_mat_contains_fmpq_mat(T, Q)) { flint_printf("FAIL (containment, iter = %wd)\n", iter); flint_printf("n = %wd, prec = %wd\n", n, prec); flint_printf("\n"); flint_printf("Q = \n"); fmpq_mat_print(Q); flint_printf("\n\n"); flint_printf("A = \n"); acb_mat_printd(A, 15); flint_printf("\n\n"); flint_printf("LU = \n"); acb_mat_printd(LU, 15); flint_printf("\n\n"); flint_printf("L = \n"); acb_mat_printd(L, 15); flint_printf("\n\n"); flint_printf("U = \n"); acb_mat_printd(U, 15); flint_printf("\n\n"); flint_printf("P*L*U = \n"); acb_mat_printd(T, 15); flint_printf("\n\n"); flint_abort(); } } fmpq_mat_clear(Q); acb_mat_clear(A); acb_mat_clear(LU); acb_mat_clear(P); acb_mat_clear(L); acb_mat_clear(U); acb_mat_clear(T); _perm_clear(perm); } flint_randclear(state); flint_cleanup(); flint_printf("PASS\n"); return EXIT_SUCCESS; }