/* Copyright (C) 2014 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb_modular.h" static const int pentagonal_best_m[] = { 2, 5, 7, 11, 13, 17, 19, 23, 25, 35, 55, 65, 77, 91, 119, 133, 143, 175, 275, 325, 385, 455, 595, 665, 715, 935, 1001, 1309, 1463, 1547, 1729, 1925, 2275, 2975, 3325, 3575, 4675, 5005, 6545, 7315, 7735, 8645, 10465, 11305, 12155, 13585, 16445, 17017, 19019, 23023, 24871, 25025, 32725, 36575, 38675, 43225, 52325, 56525, 60775, 67925, 82225, 85085, 95095, 115115, 124355, 145145, 146965, 168245, 177905, 198835, 224315, 230945, 279565, 312455, 323323, 391391, 425425, 475475, 575575, 621775, 725725, 734825, 841225, 889525, 994175, 0 }; static const int pentagonal_best_m_residues[] = { 2, 3, 4, 6, 7, 9, 10, 12, 11, 12, 18, 21, 24, 28, 36, 40, 42, 44, 66, 77, 72, 84, 108, 120, 126, 162, 168, 216, 240, 252, 280, 264, 308, 396, 440, 462, 594, 504, 648, 720, 756, 840, 1008, 1080, 1134, 1260, 1512, 1512, 1680, 2016, 2160, 1848, 2376, 2640, 2772, 3080, 3696, 3960, 4158, 4620, 5544, 4536, 5040, 6048, 6480, 7560, 7560, 8640, 9072, 10080, 11340, 11340, 13608, 15120, 15120, 18144, 16632, 18480, 22176, 23760, 27720, 27720, 31680, 33264, 36960, 0 }; slong acb_modular_rs_optimal_m(const int * best_ms, const int * num_residues, slong N); #define PENTAGONAL(N) ((((N)+2)/2) * ((3*(N)+5)/2)/2) void _acb_modular_mul(acb_t z, acb_t tmp1, acb_t tmp2, const acb_t x, const acb_t y, slong wprec, slong prec) { if (prec <= 1024) { acb_mul(z, x, y, wprec); } else if (x == y) { acb_set_round(tmp1, x, wprec); acb_mul(z, tmp1, tmp1, wprec); } else { acb_set_round(tmp1, x, wprec); acb_set_round(tmp2, y, wprec); acb_mul(z, tmp1, tmp2, wprec); } } void _acb_modular_eta_sum_basecase(acb_t eta, const acb_t q, double log2q_approx, slong N, slong prec) { slong e, e1, e2, k, k1, k2, num, term_prec; slong *exponents, *aindex, *bindex; acb_ptr qpow; acb_t tmp1, tmp2; double log2term_approx; if (N <= 5) { if (N <= 1) { acb_set_ui(eta, N != 0); } else if (N == 2) { acb_sub_ui(eta, q, 1, prec); acb_neg(eta, eta); } else { acb_mul(eta, q, q, prec); acb_add(eta, eta, q, prec); acb_neg(eta, eta); acb_add_ui(eta, eta, 1, prec); } return; } num = 1; while (PENTAGONAL(num) < N) num++; acb_init(tmp1); acb_init(tmp2); exponents = flint_malloc(sizeof(slong) * 3 * num); aindex = exponents + num; bindex = aindex + num; qpow = _acb_vec_init(num); acb_modular_addseq_eta(exponents, aindex, bindex, num); acb_set_round(qpow + 0, q, prec); acb_zero(eta); for (k = 0; k < num; k++) { e = exponents[k]; log2term_approx = e * log2q_approx; term_prec = FLINT_MIN(FLINT_MAX(prec + log2term_approx + 16.0, 16.0), prec); if (k > 0) { k1 = aindex[k]; k2 = bindex[k]; e1 = exponents[k1]; e2 = exponents[k2]; if (e == e1 + e2) { _acb_modular_mul(qpow + k, tmp1, tmp2, qpow + k1, qpow + k2, term_prec, prec); } else if (e == 2 * e1 + e2) { _acb_modular_mul(qpow + k, tmp1, tmp2, qpow + k1, qpow + k1, term_prec, prec); _acb_modular_mul(qpow + k, tmp1, tmp2, qpow + k, qpow + k2, term_prec, prec); } else { flint_printf("exponent not in addition sequence!\n"); flint_abort(); } } if (k % 4 <= 1) acb_sub(eta, eta, qpow + k, prec); else acb_add(eta, eta, qpow + k, prec); } acb_add_ui(eta, eta, 1, prec); flint_free(exponents); _acb_vec_clear(qpow, num); acb_clear(tmp1); acb_clear(tmp2); } void _acb_modular_eta_sum_rs(acb_t eta, const acb_t q, double log2q_approx, slong N, slong prec) { slong * tab; slong k, term_prec, i, e, eprev; slong m, num_pentagonal; double log2term_approx; acb_ptr qpow; acb_t tmp1, tmp2; acb_init(tmp1); acb_init(tmp2); /* choose rectangular splitting parameters */ m = acb_modular_rs_optimal_m(pentagonal_best_m, pentagonal_best_m_residues, N); /* build addition sequence */ tab = flint_calloc(m + 1, sizeof(slong)); for (k = 0; PENTAGONAL(k) < N; k++) tab[PENTAGONAL(k) % m] = -1; num_pentagonal = k; tab[m] = -1; /* compute powers in addition sequence */ qpow = _acb_vec_init(m + 1); acb_modular_fill_addseq(tab, m + 1); for (k = 0; k < m + 1; k++) { if (k == 0) { acb_one(qpow + k); } else if (k == 1) { acb_set_round(qpow + k, q, prec); } else if (tab[k] != 0) { log2term_approx = k * log2q_approx; term_prec = FLINT_MIN(FLINT_MAX(prec + log2term_approx + 16.0, 16.0), prec); _acb_modular_mul(qpow + k, tmp1, tmp2, qpow + tab[k], qpow + k - tab[k], term_prec, prec); } } /* compute eta */ acb_zero(eta); term_prec = prec; for (k = num_pentagonal - 1; k >= 0; k--) { e = PENTAGONAL(k); /* exponent */ eprev = PENTAGONAL(k+1); log2term_approx = e * log2q_approx; term_prec = FLINT_MIN(FLINT_MAX(prec + log2term_approx + 16.0, 16.0), prec); /* giant steps */ for (i = e / m; i < eprev / m; i++) { if (!acb_is_zero(eta)) _acb_modular_mul(eta, tmp1, tmp2, eta, qpow + m, term_prec, prec); } if (k % 4 <= 1) acb_sub(eta, eta, qpow + (e % m), prec); else acb_add(eta, eta, qpow + (e % m), prec); } acb_add_ui(eta, eta, 1, prec); acb_clear(tmp1); acb_clear(tmp2); _acb_vec_clear(qpow, m + 1); flint_free(tab); } void acb_modular_eta_sum(acb_t eta, const acb_t q, slong prec) { mag_t err, qmag; double log2q_approx; int q_is_real; slong N; mag_init(err); mag_init(qmag); q_is_real = arb_is_zero(acb_imagref(q)); acb_get_mag(qmag, q); log2q_approx = mag_get_d_log2_approx(qmag); if (log2q_approx >= 0.0) { N = 1; mag_inf(err); } else /* Pick N and compute error bound */ { N = 0; while (0.05 * N * N < prec) { if (log2q_approx * PENTAGONAL(N) < -prec - 2) break; N++; } N = PENTAGONAL(N); mag_geom_series(err, qmag, N); if (mag_is_inf(err)) N = 1; } if (N < 400) _acb_modular_eta_sum_basecase(eta, q, log2q_approx, N, prec); else _acb_modular_eta_sum_rs(eta, q, log2q_approx, N, prec); if (q_is_real) arb_add_error_mag(acb_realref(eta), err); else acb_add_error_mag(eta, err); mag_clear(err); mag_clear(qmag); }