/* Copyright (C) 2014 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb_modular.h" int main() { slong iter; flint_rand_t state; flint_printf("eta...."); fflush(stdout); flint_randinit(state); /* Test functional equation */ for (iter = 0; iter < 10000 * arb_test_multiplier(); iter++) { acb_t tau1, tau2, z1, z2, z3, t; fmpq_t arg; slong e0, prec0, prec1, prec2; psl2z_t g; psl2z_init(g); fmpq_init(arg); acb_init(tau1); acb_init(tau2); acb_init(z1); acb_init(z2); acb_init(z3); acb_init(t); e0 = 1 + n_randint(state, 200); prec0 = 2 + n_randint(state, 2000); prec1 = 2 + n_randint(state, 2000); prec2 = 2 + n_randint(state, 2000); acb_randtest(tau1, state, prec0, e0); acb_randtest(tau2, state, prec0, e0); acb_randtest(z1, state, prec0, e0); acb_randtest(z2, state, prec0, e0); psl2z_randtest(g, state, 1 + n_randint(state, 200)); acb_modular_transform(tau2, g, tau1, prec0); acb_modular_eta(z1, tau1, prec1); acb_modular_eta(z2, tau2, prec2); /* apply transformation */ fmpq_set_si(arg, acb_modular_epsilon_arg(g), 12); arb_sin_cos_pi_fmpq(acb_imagref(t), acb_realref(t), arg, prec1); acb_mul(z3, z1, t, prec1); acb_mul_fmpz(t, tau1, &g->c, prec1); acb_add_fmpz(t, t, &g->d, prec1); acb_sqrt(t, t, prec1); acb_mul(z3, z3, t, prec1); if (!acb_overlaps(z3, z2)) { flint_printf("FAIL (overlap)\n"); flint_printf("tau1 = "); acb_printd(tau1, 15); flint_printf("\n\n"); flint_printf("tau2 = "); acb_printd(tau2, 15); flint_printf("\n\n"); flint_printf("g = "); psl2z_print(g); flint_printf("\n\n"); flint_printf("z1 = "); acb_printd(z1, 15); flint_printf("\n\n"); flint_printf("z2 = "); acb_printd(z2, 15); flint_printf("\n\n"); flint_printf("z3 = "); acb_printd(z3, 15); flint_printf("\n\n"); flint_abort(); } acb_modular_eta(tau1, tau1, prec2); if (!acb_overlaps(z1, tau1)) { flint_printf("FAIL (aliasing)\n"); flint_printf("tau1 = "); acb_print(tau1); flint_printf("\n\n"); flint_printf("tau2 = "); acb_print(tau2); flint_printf("\n\n"); flint_printf("z1 = "); acb_print(z1); flint_printf("\n\n"); flint_printf("z2 = "); acb_print(z2); flint_printf("\n\n"); flint_abort(); } acb_clear(tau1); acb_clear(tau2); acb_clear(z1); acb_clear(z2); acb_clear(z3); acb_clear(t); psl2z_clear(g); fmpq_clear(arg); } /* Test special values */ for (iter = 0; iter < 100 * arb_test_multiplier(); iter++) { acb_t tau, z; arb_t t, u; slong prec; acb_init(tau); acb_init(z); arb_init(t); arb_init(u); prec = 2 + n_randint(state, 10000); acb_randtest(z, state, prec, 10); acb_onei(tau); acb_modular_eta(z, tau, prec); arb_one(t); arb_mul_2exp_si(t, t, -2); arb_gamma(t, t, prec); arb_const_pi(u, prec); arb_root_ui(u, u, 4, prec); arb_pow_ui(u, u, 3, prec); arb_div(t, t, u, prec); arb_mul_2exp_si(t, t, -1); if (!arb_overlaps(acb_realref(z), t) || !arb_contains_zero(acb_imagref(z))) { flint_printf("FAIL (value 1)\n"); flint_printf("tau = "); acb_print(tau); flint_printf("\n\n"); flint_printf("z = "); acb_print(z); flint_printf("\n\n"); flint_abort(); } acb_clear(tau); acb_clear(z); arb_clear(t); arb_clear(u); } flint_randclear(state); flint_cleanup(); flint_printf("PASS\n"); return EXIT_SUCCESS; }