/* Copyright (C) 2014 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb_modular.h" static void acb_mul_4th_root(acb_t y, const acb_t x, int r, slong prec) { r &= 7; if (r == 0) { acb_set(y, x); } else if (r == 4) { acb_neg(y, x); } else if (r == 2) { acb_mul_onei(y, x); } else if (r == 6) { acb_mul_onei(y, x); acb_neg(y, y); } else { fmpq_t t; fmpq_init(t); fmpq_set_si(t, r, 4); arb_sin_cos_pi_fmpq(acb_imagref(y), acb_realref(y), t, prec); acb_mul(y, y, x, prec); fmpq_clear(t); } } void acb_modular_theta(acb_t theta1, acb_t theta2, acb_t theta3, acb_t theta4, const acb_t z, const acb_t tau, slong prec) { fmpq_t t; psl2z_t g; arf_t one_minus_eps; acb_t z_prime, tau_prime, q, q4, w, A, B; acb_struct thetas[4]; int w_is_unit, R[4], S[4], C; int t1r, t1i, t2r, t2i, t3r, t4r; if (!acb_is_finite(z) || !acb_is_finite(tau) || !arb_is_positive(acb_imagref(tau))) { acb_indeterminate(theta1); acb_indeterminate(theta2); acb_indeterminate(theta3); acb_indeterminate(theta4); return; } /* special cases when real(tau) is an integer n: z is real: theta1 real if n mod 4 = 0 theta1 imaginary if n mod 4 = 2 theta2 real if n mod 4 = 0 theta2 imaginary if n mod 4 = 2 theta3 real always theta4 real always z is imaginary: theta1 real if n mod 4 = 2 theta1 imaginary if n mod 4 = 0 theta2 real if n mod 4 = 0 theta2 imaginary if n mod 4 = 2 theta3 real always theta4 real always */ t1r = t1i = t2r = t2i = t3r = t4r = 0; if (arb_is_int(acb_realref(tau))) { int val; if (arb_is_int_2exp_si(acb_realref(tau), 2)) val = 2; else if (arb_is_int_2exp_si(acb_realref(tau), 1)) val = 1; else val = 0; if (arb_is_zero(acb_imagref(z))) { t3r = t4r = 1; if (val == 2) t1r = t2r = 1; if (val == 1) t1i = t2i = 1; } if (arb_is_zero(acb_realref(z))) { t3r = t4r = 1; if (val == 2) t1i = t2r = 1; if (val == 1) t1r = t2i = 1; } } psl2z_init(g); fmpq_init(t); arf_init(one_minus_eps); acb_init(z_prime); acb_init(tau_prime); acb_init(q); acb_init(q4); acb_init(w); acb_init(thetas + 0); acb_init(thetas + 1); acb_init(thetas + 2); acb_init(thetas + 3); acb_init(A); acb_init(B); /* move tau to the fundamental domain */ arf_set_ui_2exp_si(one_minus_eps, 63, -6); acb_modular_fundamental_domain_approx(tau_prime, g, tau, one_minus_eps, prec); /* compute transformation parameters */ acb_modular_theta_transform(R, S, &C, g); if (C == 0) { acb_set(z_prime, z); acb_one(A); } else { /* B = 1/(c*tau+d) (temporarily) */ acb_mul_fmpz(B, tau, &g->c, prec); acb_add_fmpz(B, B, &g->d, prec); acb_inv(B, B, prec); /* -z/(c*tau+d) */ acb_mul(z_prime, z, B, prec); acb_neg(z_prime, z_prime); /* A = sqrt(i/(c*tau+d)) */ acb_mul_onei(A, B); acb_sqrt(A, A, prec); /* B = exp(-pi i c z^2/(c*tau+d)) */ /* we first compute the argument here */ if (acb_is_zero(z)) { acb_zero(B); } else { acb_mul(B, z_prime, z, prec); acb_mul_fmpz(B, B, &g->c, prec); } } /* reduce z_prime modulo tau_prime if the imaginary part is large */ if (arf_cmpabs_2exp_si(arb_midref(acb_imagref(z_prime)), 4) > 0) { arb_t nn; arb_init(nn); arf_div(arb_midref(nn), arb_midref(acb_imagref(z_prime)), arb_midref(acb_imagref(tau_prime)), prec, ARF_RND_DOWN); arf_mul_2exp_si(arb_midref(nn), arb_midref(nn), 1); arf_add_ui(arb_midref(nn), arb_midref(nn), 1, prec, ARF_RND_DOWN); arf_mul_2exp_si(arb_midref(nn), arb_midref(nn), -1); arf_floor(arb_midref(nn), arb_midref(nn)); /* transform z_prime further */ acb_submul_arb(z_prime, tau_prime, nn, prec); /* add -tau n^2 - 2nz to B */ arb_mul_2exp_si(nn, nn, 1); acb_submul_arb(B, z_prime, nn, prec); arb_mul_2exp_si(nn, nn, -1); arb_sqr(nn, nn, prec); acb_submul_arb(B, tau_prime, nn, prec); /* theta1, theta4 pick up factors (-1)^n */ if (!arf_is_int_2exp_si(arb_midref(nn), 1)) { int i; for (i = 0; i < 4; i++) { if (S[i] == 0 || S[i] == 3) R[i] += 4; } } C = 1; arb_clear(nn); } if (C != 0) acb_exp_pi_i(B, B, prec); /* compute q_{1/4}, q */ acb_mul_2exp_si(q4, tau_prime, -2); acb_exp_pi_i(q4, q4, prec); acb_pow_ui(q, q4, 4, prec); /* compute w */ acb_exp_pi_i(w, z_prime, prec); w_is_unit = arb_is_zero(acb_imagref(z_prime)); /* evaluate theta functions of transformed variables */ acb_modular_theta_sum(thetas + 0, thetas + 1, thetas + 2, thetas + 3, w, w_is_unit, q, 1, prec); acb_mul(thetas + 0, thetas + 0, q4, prec); acb_mul(thetas + 1, thetas + 1, q4, prec); /* multiply by roots of unity */ acb_mul_4th_root(theta1, thetas + S[0], R[0], prec); acb_mul_4th_root(theta2, thetas + S[1], R[1], prec); acb_mul_4th_root(theta3, thetas + S[2], R[2], prec); acb_mul_4th_root(theta4, thetas + S[3], R[3], prec); if (C != 0) { acb_mul(A, A, B, prec); acb_mul(theta1, theta1, A, prec); acb_mul(theta2, theta2, A, prec); acb_mul(theta3, theta3, A, prec); acb_mul(theta4, theta4, A, prec); } if (t1r) arb_zero(acb_imagref(theta1)); if (t1i) arb_zero(acb_realref(theta1)); if (t2r) arb_zero(acb_imagref(theta2)); if (t2i) arb_zero(acb_realref(theta2)); if (t3r) arb_zero(acb_imagref(theta3)); if (t4r) arb_zero(acb_imagref(theta4)); psl2z_clear(g); fmpq_clear(t); arf_clear(one_minus_eps); acb_clear(z_prime); acb_clear(tau_prime); acb_clear(q); acb_clear(q4); acb_clear(w); acb_clear(thetas + 0); acb_clear(thetas + 1); acb_clear(thetas + 2); acb_clear(thetas + 3); acb_clear(A); acb_clear(B); } void acb_modular_theta_notransform(acb_t theta1, acb_t theta2, acb_t theta3, acb_t theta4, const acb_t z, const acb_t tau, slong prec) { acb_t q, q4, w; int w_is_unit; acb_init(q); acb_init(q4); acb_init(w); /* compute q_{1/4}, q */ acb_mul_2exp_si(q4, tau, -2); acb_exp_pi_i(q4, q4, prec); acb_pow_ui(q, q4, 4, prec); /* compute w */ acb_exp_pi_i(w, z, prec); w_is_unit = arb_is_zero(acb_imagref(z)); /* evaluate theta functions */ acb_modular_theta_sum(theta1, theta2, theta3, theta4, w, w_is_unit, q, 1, prec); acb_mul(theta1, theta1, q4, prec); acb_mul(theta2, theta2, q4, prec); acb_clear(q); acb_clear(q4); acb_clear(w); }