/* Copyright (C) 2015 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb_modular.h" static const int square_best_m[] = { 2, 3, 4, 8, 12, 16, 32, 48, 80, 96, 112, 144, 240, 288, 336, 480, 560, 576, 720, 1008, 1440, 1680, 2016, 2640, 2880, 3600, 4032, 5040, 7920, 9360, 10080, 15840, 18480, 20160, 25200, 31680, 37440, 39600, 44352, 50400, 55440, 65520, 85680, 95760, 102960, 110880, 131040, 171360, 191520, 205920, 221760, 262080, 277200, 327600, 383040, 411840, 514800, 554400, 655200, 720720, 942480, 0 }; static const int square_best_m_residues[] = { 2, 2, 2, 3, 4, 4, 7, 8, 12, 14, 16, 16, 24, 28, 32, 42, 48, 48, 48, 64, 84, 96, 112, 144, 144, 176, 192, 192, 288, 336, 336, 504, 576, 576, 704, 864, 1008, 1056, 1152, 1232, 1152, 1344, 1728, 1920, 2016, 2016, 2352, 3024, 3360, 3528, 3456, 4032, 4224, 4928, 5760, 6048, 7392, 7392, 8624, 8064, 10368, 0 }; static const int trigonal_best_m[] = { 2, 6, 10, 14, 18, 30, 42, 66, 70, 90, 126, 198, 210, 330, 390, 450, 630, 990, 1170, 1386, 1638, 2142, 2310, 2730, 3150, 4950, 5850, 6930, 8190, 10710, 11970, 12870, 16830, 18018, 23562, 26334, 27846, 30030, 34650, 40950, 53550, 59850, 64350, 84150, 90090, 117810, 131670, 139230, 155610, 188370, 203490, 218790, 244530, 270270, 296010, 306306, 342342, 414414, 447678, 450450, 589050, 658350, 696150, 778050, 941850, 0 }; static const int trigonal_best_m_residues[] = { 1, 2, 3, 4, 4, 6, 8, 12, 12, 12, 16, 24, 24, 36, 42, 44, 48, 72, 84, 96, 112, 144, 144, 168, 176, 264, 308, 288, 336, 432, 480, 504, 648, 672, 864, 960, 1008, 1008, 1056, 1232, 1584, 1760, 1848, 2376, 2016, 2592, 2880, 3024, 3360, 4032, 4320, 4536, 5040, 5544, 6048, 6048, 6720, 8064, 8640, 7392, 9504, 10560, 11088, 12320, 14784, 0, }; slong acb_modular_rs_optimal_m(const int * best_ms, const int * num_residues, slong N) { slong i, m, cost, best_i, best_m, best_cost; best_i = 0; best_m = best_ms[0]; best_cost = WORD_MAX; for (i = 0; (m = best_ms[i]) != 0; i++) { cost = N / m + num_residues[i]; if (i == 0 || cost < best_cost) { best_i = i; best_cost = cost; best_m = m; } } /* flint_printf("N = %wd, best_m = %wd, best_cost = %wd, s(m) = %d\n", N, best_m, best_cost, num_residues[best_i]); */ i = best_i; return best_m; } void acb_modular_theta_const_sum_rs(acb_t theta2, acb_t theta3, acb_t theta4, const acb_t q, slong N, slong prec) { slong * tab; slong k, term_prec, i, e, eprev; slong M, m2, m3, num_square, num_trigonal; double log2q_approx, log2term_approx; acb_ptr qpow; acb_t tmp1, tmp2; mag_t qmag; mag_init(qmag); acb_get_mag(qmag, q); log2q_approx = mag_get_d_log2_approx(qmag); mag_clear(qmag); acb_init(tmp1); acb_init(tmp2); /* choose rectangular splitting parameters */ m2 = acb_modular_rs_optimal_m(trigonal_best_m, trigonal_best_m_residues, N); m3 = acb_modular_rs_optimal_m(square_best_m, square_best_m_residues, N); M = FLINT_MAX(m2, m3) + 1; /* build addition sequence */ tab = flint_calloc(M, sizeof(slong)); for (k = 0; k*(k+1) < N; k++) tab[(k*(k+1)) % m2] = -1; num_trigonal = k; for (k = 0; k*k < N; k++) tab[(k*k) % m3] = -1; num_square = k; tab[m2] = -1; tab[m3] = -1; /* compute powers in addition sequence */ qpow = _acb_vec_init(M); acb_modular_fill_addseq(tab, M); for (k = 0; k < M; k++) { if (k == 0) { acb_one(qpow + k); } else if (k == 1) { acb_set_round(qpow + k, q, prec); } else if (tab[k] != 0) { log2term_approx = k * log2q_approx; term_prec = FLINT_MIN(FLINT_MAX(prec + log2term_approx + 16.0, 16.0), prec); _acb_modular_mul(qpow + k, tmp1, tmp2, qpow + tab[k], qpow + k - tab[k], term_prec, prec); } } /* compute theta2 */ acb_zero(theta2); term_prec = prec; for (k = num_trigonal - 1; k >= 0; k--) { e = k * (k + 1); /* exponent */ eprev = (k + 1) * (k + 2); log2term_approx = e * log2q_approx; term_prec = FLINT_MIN(FLINT_MAX(prec + log2term_approx + 16.0, 16.0), prec); /* giant steps */ for (i = e / m2; i < eprev / m2; i++) { if (!acb_is_zero(theta2)) _acb_modular_mul(theta2, tmp1, tmp2, theta2, qpow + m2, term_prec, prec); } acb_add(theta2, theta2, qpow + (e % m2), prec); } acb_mul_2exp_si(theta2, theta2, 1); /* compute theta3, theta4 */ acb_zero(theta3); acb_zero(theta4); term_prec = prec; for (k = num_square - 1; k >= 0; k--) { e = k * k; /* exponent */ eprev = (k + 1) * (k + 1); log2term_approx = e * log2q_approx; term_prec = FLINT_MIN(FLINT_MAX(prec + log2term_approx + 16.0, 16.0), prec); /* giant steps */ for (i = e / m3; i < eprev / m3; i++) { if (!acb_is_zero(theta3)) _acb_modular_mul(theta3, tmp1, tmp2, theta3, qpow + m3, term_prec, prec); if (!acb_is_zero(theta4)) _acb_modular_mul(theta4, tmp1, tmp2, theta4, qpow + m3, term_prec, prec); } if (k == 0) { acb_mul_2exp_si(theta3, theta3, 1); acb_mul_2exp_si(theta4, theta4, 1); } acb_add(theta3, theta3, qpow + (e % m3), prec); if (k % 2 == 0) acb_add(theta4, theta4, qpow + (e % m3), prec); else acb_sub(theta4, theta4, qpow + (e % m3), prec); } acb_clear(tmp1); acb_clear(tmp2); _acb_vec_clear(qpow, M); flint_free(tab); }