/* Copyright (C) 2013 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb_poly.h" void acb_hypgeom_gamma_stirling_choose_param(int * reflect, slong * r, slong * n, const acb_t x, int use_reflect, int digamma, slong prec); void _acb_poly_gamma_stirling_eval(acb_ptr res, const acb_t z, slong n, slong num, slong prec); void _acb_poly_gamma_stirling_eval2(acb_ptr res, const acb_t z, slong n, slong num, int diff, slong prec); void _acb_poly_digamma_series(acb_ptr res, acb_srcptr h, slong hlen, slong len, slong prec) { int reflect; slong i, r, n, rflen, wp; acb_t zr; acb_ptr t, u, v; hlen = FLINT_MIN(hlen, len); if (hlen == 1) { acb_digamma(res, h, prec); if (acb_is_finite(res)) _acb_vec_zero(res + 1, len - 1); else _acb_vec_indeterminate(res + 1, len - 1); return; } /* use real code for real input */ if (_acb_vec_is_real(h, hlen)) { arb_ptr tmp = _arb_vec_init(len); for (i = 0; i < hlen; i++) arb_set(tmp + i, acb_realref(h + i)); _arb_poly_digamma_series(tmp, tmp, hlen, len, prec); for (i = 0; i < len; i++) acb_set_arb(res + i, tmp + i); _arb_vec_clear(tmp, len); return; } wp = prec + FLINT_BIT_COUNT(prec); t = _acb_vec_init(len + 1); u = _acb_vec_init(len + 1); v = _acb_vec_init(len + 1); acb_init(zr); /* use Stirling series */ acb_hypgeom_gamma_stirling_choose_param(&reflect, &r, &n, h, 1, 1, wp); /* psi(x) = psi((1-x)+r) - h(1-x,r) - pi*cot(pi*x) */ if (reflect) { if (r != 0) /* otherwise t = 0 */ { acb_sub_ui(v, h, 1, wp); acb_neg(v, v); acb_one(v + 1); rflen = FLINT_MIN(len + 1, r + 1); _acb_poly_rising_ui_series(u, v, 2, r, rflen, wp); _acb_poly_derivative(v, u, rflen, wp); _acb_poly_div_series(t, v, rflen - 1, u, rflen, len, wp); for (i = 1; i < len; i += 2) acb_neg(t + i, t + i); } acb_sub_ui(zr, h, r + 1, wp); acb_neg(zr, zr); _acb_poly_gamma_stirling_eval2(u, zr, n, len + 1, 1, wp); for (i = 1; i < len; i += 2) acb_neg(u + i, u + i); _acb_vec_sub(u, u, t, len, wp); acb_set(t, h); acb_one(t + 1); _acb_poly_cot_pi_series(t, t, 2, len, wp); acb_const_pi(v, wp); _acb_vec_scalar_mul(t, t, len, v, wp); _acb_vec_sub(u, u, t, len, wp); } else { if (r == 0) { acb_add_ui(zr, h, r, wp); _acb_poly_gamma_stirling_eval2(u, zr, n, len + 1, 1, wp); } else { acb_set(v, h); acb_one(v + 1); rflen = FLINT_MIN(len + 1, r + 1); _acb_poly_rising_ui_series(u, v, 2, r, rflen, wp); _acb_poly_derivative(v, u, rflen, wp); _acb_poly_div_series(t, v, rflen - 1, u, rflen, len, wp); acb_add_ui(zr, h, r, wp); _acb_poly_gamma_stirling_eval2(u, zr, n, len + 1, 1, wp); _acb_vec_sub(u, u, t, len, wp); } } /* compose with nonconstant part */ acb_zero(t); _acb_vec_set(t + 1, h + 1, hlen - 1); _acb_poly_compose_series(res, u, len, t, hlen, len, prec); acb_clear(zr); _acb_vec_clear(t, len + 1); _acb_vec_clear(u, len + 1); _acb_vec_clear(v, len + 1); } void acb_poly_digamma_series(acb_poly_t res, const acb_poly_t f, slong n, slong prec) { acb_poly_fit_length(res, n); if (f->length == 0 || n == 0) _acb_vec_indeterminate(res->coeffs, n); else _acb_poly_digamma_series(res->coeffs, f->coeffs, f->length, n, prec); _acb_poly_set_length(res, n); _acb_poly_normalise(res); }