/* Copyright (C) 2012 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb_poly.h" /* allow changing this from the test code */ ARB_DLL slong acb_poly_newton_exp_cutoff = 0; /* with inverse=1 simultaneously computes g = exp(-x) to length n with inverse=0 uses g as scratch space, computing g = exp(-x) only to length (n+1)/2 */ static void _acb_poly_exp_series_newton(acb_ptr f, acb_ptr g, acb_srcptr h, slong len, slong prec, int inverse, slong cutoff) { slong alloc; acb_ptr T, U, hprime; alloc = 3 * len; T = _acb_vec_init(alloc); U = T + len; hprime = U + len; _acb_poly_derivative(hprime, h, len, prec); acb_zero(hprime + len - 1); NEWTON_INIT(cutoff, len) /* f := exp(h) + O(x^m), g := exp(-h) + O(x^m2) */ NEWTON_BASECASE(n) _acb_poly_exp_series_basecase(f, h, n, n, prec); _acb_poly_inv_series(g, f, (n + 1) / 2, (n + 1) / 2, prec); NEWTON_END_BASECASE /* extend from length m to length n */ NEWTON_LOOP(m, n) slong m2 = (m + 1) / 2; slong l = m - 1; /* shifted for derivative */ /* g := exp(-h) + O(x^m) */ _acb_poly_mullow(T, f, m, g, m2, m, prec); _acb_poly_mullow(g + m2, g, m2, T + m2, m - m2, m - m2, prec); _acb_vec_neg(g + m2, g + m2, m - m2); /* U := h' + g (f' - f h') + O(x^(n-1)) Note: should replace h' by h' mod x^(m-1) */ _acb_vec_zero(f + m, n - m); _acb_poly_mullow(T, f, n, hprime, n, n, prec); /* should be mulmid */ _acb_poly_derivative(U, f, n, prec); acb_zero(U + n - 1); /* should skip low terms */ _acb_vec_sub(U + l, U + l, T + l, n - l, prec); _acb_poly_mullow(T + l, g, n - m, U + l, n - m, n - m, prec); _acb_vec_add(U + l, hprime + l, T + l, n - m, prec); /* f := f + f * (h - int U) + O(x^n) = exp(h) + O(x^n) */ _acb_poly_integral(U, U, n, prec); /* should skip low terms */ _acb_vec_sub(U + m, h + m, U + m, n - m, prec); _acb_poly_mullow(f + m, f, n - m, U + m, n - m, n - m, prec); /* g := exp(-h) + O(x^n) */ /* not needed if we only want exp(x) */ if (n == len && inverse) { _acb_poly_mullow(T, f, n, g, m, n, prec); _acb_poly_mullow(g + m, g, m, T + m, n - m, n - m, prec); _acb_vec_neg(g + m, g + m, n - m); } NEWTON_END_LOOP NEWTON_END _acb_vec_clear(T, alloc); } void _acb_poly_exp_series(acb_ptr f, acb_srcptr h, slong hlen, slong n, slong prec) { hlen = FLINT_MIN(hlen, n); if (hlen == 1) { acb_exp(f, h, prec); _acb_vec_zero(f + 1, n - 1); } else if (n == 2) { acb_exp(f, h, prec); acb_mul(f + 1, f, h + 1, prec); /* safe since hlen >= 2 */ } else if (_acb_vec_is_zero(h + 1, hlen - 2)) /* h = a + bx^d */ { slong i, j, d = hlen - 1; acb_t t; acb_init(t); acb_set(t, h + d); acb_exp(f, h, prec); for (i = 1, j = d; j < n; j += d, i++) { acb_mul(f + j, f + j - d, t, prec); acb_div_ui(f + j, f + j, i, prec); _acb_vec_zero(f + j - d + 1, hlen - 2); } _acb_vec_zero(f + j - d + 1, n - (j - d + 1)); acb_clear(t); } else { slong cutoff; if (acb_poly_newton_exp_cutoff != 0) cutoff = acb_poly_newton_exp_cutoff; else if (prec <= 256) cutoff = 750; else cutoff = 1e5 / pow(log(prec), 3); if (hlen <= cutoff) { _acb_poly_exp_series_basecase(f, h, hlen, n, prec); } else { acb_ptr g, t; acb_t u; int fix; g = _acb_vec_init((n + 1) / 2); fix = (hlen < n || h == f || !acb_is_zero(h)); if (fix) { t = _acb_vec_init(n); _acb_vec_set(t + 1, h + 1, hlen - 1); } else t = (acb_ptr) h; acb_init(u); acb_exp(u, h, prec); _acb_poly_exp_series_newton(f, g, t, n, prec, 0, cutoff); if (!acb_is_one(u)) _acb_vec_scalar_mul(f, f, n, u, prec); _acb_vec_clear(g, (n + 1) / 2); if (fix) _acb_vec_clear(t, n); acb_clear(u); } } } void acb_poly_exp_series(acb_poly_t f, const acb_poly_t h, slong n, slong prec) { slong hlen = h->length; if (n == 0) { acb_poly_zero(f); return; } if (hlen == 0) { acb_poly_one(f); return; } if (hlen == 1) n = 1; acb_poly_fit_length(f, n); _acb_poly_exp_series(f->coeffs, h->coeffs, hlen, n, prec); _acb_poly_set_length(f, n); _acb_poly_normalise(f); }