/* Copyright (C) 2013 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb_poly.h" void acb_hypgeom_gamma_stirling_choose_param(int * reflect, slong * r, slong * n, const acb_t x, int use_reflect, int digamma, slong prec); void _acb_poly_gamma_stirling_eval(acb_ptr res, const acb_t z, slong n, slong num, slong prec); void _acb_poly_rgamma_series(acb_ptr res, acb_srcptr h, slong hlen, slong len, slong prec) { int reflect; slong i, rflen, r, n, wp; acb_ptr t, u, v; acb_struct f[2]; hlen = FLINT_MIN(hlen, len); if (hlen == 1) { acb_rgamma(res, h, prec); _acb_vec_zero(res + 1, len - 1); return; } /* use real code for real input */ if (_acb_vec_is_real(h, hlen)) { arb_ptr tmp = _arb_vec_init(len); for (i = 0; i < hlen; i++) arb_set(tmp + i, acb_realref(h + i)); _arb_poly_rgamma_series(tmp, tmp, hlen, len, prec); for (i = 0; i < len; i++) acb_set_arb(res + i, tmp + i); _arb_vec_clear(tmp, len); return; } wp = prec + FLINT_BIT_COUNT(prec); t = _acb_vec_init(len); u = _acb_vec_init(len); v = _acb_vec_init(len); acb_init(f); acb_init(f + 1); /* otherwise use Stirling series */ acb_hypgeom_gamma_stirling_choose_param(&reflect, &r, &n, h, 1, 0, wp); /* rgamma(h) = (gamma(1-h+r) sin(pi h)) / (rf(1-h, r) * pi), h = h0 + t*/ if (reflect) { /* u = gamma(r+1-h) */ acb_sub_ui(f, h, r + 1, wp); acb_neg(f, f); _acb_poly_gamma_stirling_eval(t, f, n, len, wp); _acb_poly_exp_series(u, t, len, len, wp); for (i = 1; i < len; i += 2) acb_neg(u + i, u + i); /* v = sin(pi x) */ acb_set(f, h); acb_one(f + 1); _acb_poly_sin_pi_series(v, f, 2, len, wp); _acb_poly_mullow(t, u, len, v, len, len, wp); /* rf(1-h,r) * pi */ if (r == 0) { acb_const_pi(u, wp); _acb_vec_scalar_div(v, t, len, u, wp); } else { acb_sub_ui(f, h, 1, wp); acb_neg(f, f); acb_set_si(f + 1, -1); rflen = FLINT_MIN(len, r + 1); _acb_poly_rising_ui_series(v, f, FLINT_MIN(2, len), r, rflen, wp); acb_const_pi(u, wp); _acb_vec_scalar_mul(v, v, rflen, u, wp); /* divide by rising factorial */ /* TODO: might better to use div_series, when it has a good basecase */ _acb_poly_inv_series(u, v, rflen, len, wp); _acb_poly_mullow(v, t, len, u, len, len, wp); } } else { /* rgamma(h) = rgamma(h+r) rf(h,r) */ if (r == 0) { acb_add_ui(f, h, r, wp); _acb_poly_gamma_stirling_eval(t, f, n, len, wp); _acb_vec_neg(t, t, len); _acb_poly_exp_series(v, t, len, len, wp); } else { acb_set(f, h); acb_one(f + 1); rflen = FLINT_MIN(len, r + 1); _acb_poly_rising_ui_series(t, f, FLINT_MIN(2, len), r, rflen, wp); acb_add_ui(f, h, r, wp); _acb_poly_gamma_stirling_eval(v, f, n, len, wp); _acb_vec_neg(v, v, len); _acb_poly_exp_series(u, v, len, len, wp); _acb_poly_mullow(v, u, len, t, rflen, len, wp); } } /* compose with nonconstant part */ acb_zero(t); _acb_vec_set(t + 1, h + 1, hlen - 1); _acb_poly_compose_series(res, v, len, t, hlen, len, prec); acb_clear(f); acb_clear(f + 1); _acb_vec_clear(t, len); _acb_vec_clear(u, len); _acb_vec_clear(v, len); } void acb_poly_rgamma_series(acb_poly_t res, const acb_poly_t f, slong n, slong prec) { if (f->length == 0 || n == 0) { acb_poly_zero(res); } else { acb_poly_fit_length(res, n); _acb_poly_rgamma_series(res->coeffs, f->coeffs, f->length, n, prec); _acb_poly_set_length(res, n); _acb_poly_normalise(res); } }