/* Copyright (C) 2014 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb_poly.h" #include "acb_dirichlet.h" /* res = src * (c + x) */ void _acb_poly_mullow_cpx(acb_ptr res, acb_srcptr src, slong len, const acb_t c, slong trunc, slong prec) { slong i; if (len < trunc) acb_set(res + len, src + len - 1); for (i = len - 1; i > 0; i--) { acb_mul(res + i, src + i, c, prec); acb_add(res + i, res + i, src + i - 1, prec); } acb_mul(res, src, c, prec); } /* todo: don't hardcode this */ #define SIEVE_ALLOC_LIMIT 4e9 /* 4 GB */ void _acb_poly_zeta_em_sum(acb_ptr z, const acb_t s, const acb_t a, int deflate, ulong N, ulong M, slong d, slong prec) { acb_ptr t, u, v, term, sum; acb_t Na, one; slong i; t = _acb_vec_init(d + 1); u = _acb_vec_init(d); v = _acb_vec_init(d); term = _acb_vec_init(d); sum = _acb_vec_init(d); acb_init(Na); acb_init(one); prec += 2 * (FLINT_BIT_COUNT(N) + FLINT_BIT_COUNT(d)); acb_one(one); /* sum 1/(k+a)^(s+x) */ if (acb_is_one(a) && d <= 2 && _acb_vec_estimate_allocated_bytes(d * N / 6, prec) < SIEVE_ALLOC_LIMIT) acb_dirichlet_powsum_sieved(sum, s, N, d, prec); else if (acb_is_one(a) && d <= 4) /* todo: also better for slightly larger d, if N and prec large enough */ acb_dirichlet_powsum_smooth(sum, s, N, d, prec); else if (N > 50 && flint_get_num_threads() > 1) _acb_poly_powsum_series_naive_threaded(sum, s, a, one, N, d, prec); else _acb_poly_powsum_series_naive(sum, s, a, one, N, d, prec); /* t = 1/(N+a)^(s+x); we might need one extra term for deflation */ acb_add_ui(Na, a, N, prec); _acb_poly_acb_invpow_cpx(t, Na, s, d + 1, prec); /* sum += (N+a) * 1/((s+x)-1) * t */ if (!deflate) { /* u = (N+a)^(1-(s+x)) */ acb_sub_ui(v, s, 1, prec); _acb_poly_acb_invpow_cpx(u, Na, v, d, prec); /* divide by 1/((s-1) + x) */ acb_sub_ui(v, s, 1, prec); acb_div(u, u, v, prec); for (i = 1; i < d; i++) { acb_sub(u + i, u + i, u + i - 1, prec); acb_div(u + i, u + i, v, prec); } _acb_vec_add(sum, sum, u, d, prec); } /* sum += ((N+a)^(1-(s+x)) - 1) / ((s+x) - 1) */ else { /* at s = 1, this becomes (N*t - 1)/x, i.e. just remove one coeff */ if (acb_is_one(s)) { for (i = 0; i < d; i++) acb_mul(u + i, t + i + 1, Na, prec); _acb_vec_add(sum, sum, u, d, prec); } else { /* TODO: this is numerically unstable for large derivatives, and divides by zero if s contains 1. We want a good way to evaluate the power series ((N+a)^y - 1) / y where y has nonzero constant term, without doing a division. How is this best done? */ _acb_vec_scalar_mul(t, t, d, Na, prec); acb_sub_ui(t + 0, t + 0, 1, prec); acb_sub_ui(u + 0, s, 1, prec); acb_inv(u + 0, u + 0, prec); for (i = 1; i < d; i++) acb_mul(u + i, u + i - 1, u + 0, prec); for (i = 1; i < d; i += 2) acb_neg(u + i, u + i); _acb_poly_mullow(v, u, d, t, d, d, prec); _acb_vec_add(sum, sum, v, d, prec); _acb_poly_acb_invpow_cpx(t, Na, s, d, prec); } } /* sum += u = 1/2 * t */ _acb_vec_scalar_mul_2exp_si(u, t, d, -WORD(1)); _acb_vec_add(sum, sum, u, d, prec); /* Euler-Maclaurin formula tail */ if (d < 5 || d < M / 10) _acb_poly_zeta_em_tail_naive(u, s, Na, t, M, d, prec); else _acb_poly_zeta_em_tail_bsplit(u, s, Na, t, M, d, prec); _acb_vec_add(z, sum, u, d, prec); _acb_vec_clear(t, d + 1); _acb_vec_clear(u, d); _acb_vec_clear(v, d); _acb_vec_clear(term, d); _acb_vec_clear(sum, d); acb_clear(Na); acb_clear(one); }