/* Copyright (C) 2014 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb_poly.h" #include "acb_dirichlet.h" void _acb_poly_zeta_cpx_series(acb_ptr z, const acb_t s, const acb_t a, int deflate, slong d, slong prec) { ulong M, N; slong i, bound_prec; mag_t bound; arb_ptr vb; int is_real, const_is_real; if (d < 1) return; if (!acb_is_finite(s) || !acb_is_finite(a)) { _acb_vec_indeterminate(z, d); return; } if (acb_is_one(s) && deflate && d == 1) { acb_digamma(z, a, prec); acb_neg(z, z); if (!acb_is_finite(z)) /* todo: in digamma */ acb_indeterminate(z); return; } is_real = const_is_real = 0; if (acb_is_real(s) && acb_is_real(a)) { if (arb_is_positive(acb_realref(a))) { is_real = const_is_real = 1; } else if (arb_is_int(acb_realref(a)) && arb_is_int(acb_realref(s)) && arb_is_nonpositive(acb_realref(s))) { const_is_real = 1; } } mag_init(bound); vb = _arb_vec_init(d); bound_prec = 40 + prec / 20; _acb_poly_zeta_em_choose_param(bound, &N, &M, s, a, FLINT_MIN(d, 2), prec, bound_prec); _acb_poly_zeta_em_bound(vb, s, a, N, M, d, bound_prec); _acb_poly_zeta_em_sum(z, s, a, deflate, N, M, d, prec); for (i = 0; i < d; i++) { arb_get_mag(bound, vb + i); arb_add_error_mag(acb_realref(z + i), bound); if (!is_real && !(i == 0 && const_is_real)) arb_add_error_mag(acb_imagref(z + i), bound); } mag_clear(bound); _arb_vec_clear(vb, d); } void _acb_poly_zeta_series(acb_ptr res, acb_srcptr h, slong hlen, const acb_t a, int deflate, slong len, slong prec) { acb_ptr t, u; hlen = FLINT_MIN(hlen, len); t = _acb_vec_init(len); u = _acb_vec_init(len); if (acb_is_one(a)) acb_dirichlet_zeta_jet(t, h, deflate, len, prec); else _acb_poly_zeta_cpx_series(t, h, a, deflate, len, prec); /* compose with nonconstant part */ acb_zero(u); _acb_vec_set(u + 1, h + 1, hlen - 1); _acb_poly_compose_series(res, t, len, u, hlen, len, prec); _acb_vec_clear(t, len); _acb_vec_clear(u, len); } void acb_poly_zeta_series(acb_poly_t res, const acb_poly_t f, const acb_t a, int deflate, slong n, slong prec) { if (n == 0) { acb_poly_zero(res); return; } acb_poly_fit_length(res, n); if (f->length == 0) { acb_t t; acb_init(t); _acb_poly_zeta_series(res->coeffs, t, 1, a, deflate, n, prec); acb_clear(t); } else { _acb_poly_zeta_series(res->coeffs, f->coeffs, f->length, a, deflate, n, prec); } _acb_poly_set_length(res, n); _acb_poly_normalise(res); }