/* Copyright (C) 2013 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "arb.h" #include "arb_poly.h" #include "arb_fmpz_poly.h" /* for minpoly */ void _arb_cos_pi_fmpq_algebraic(arb_t c, ulong p, ulong q, slong prec) { /* handle simple angles using exact formulas */ if (q <= 6) { if (p == 0) { arb_one(c); } else if (q == 2) /* p/q must be 1/2 */ { arb_zero(c); } else if (q == 3) /* p/q must be 1/3 */ { arb_set_ui(c, 1); arb_mul_2exp_si(c, c, -1); } else if (q == 4) /* p/q must be 1/4 */ { arb_sqrt_ui(c, 2, prec); arb_mul_2exp_si(c, c, -1); } else if (q == 5) /* p/q must be 1/5 or 2/5 */ { arb_sqrt_ui(c, 5, prec + 3); arb_add_si(c, c, (p == 1) ? 1 : -1, prec); arb_mul_2exp_si(c, c, -2); } else if (q == 6) /* p/q must be 1/6 */ { arb_sqrt_ui(c, 3, prec); arb_mul_2exp_si(c, c, -1); } } /* reduce even denominator */ else if (q % 2 == 0) { slong extra = 2 * FLINT_BIT_COUNT(q) + 2; if (4 * p <= q) { _arb_cos_pi_fmpq_algebraic(c, p, q / 2, prec + extra); arb_add_ui(c, c, 1, prec + extra); } else { _arb_cos_pi_fmpq_algebraic(c, q / 2 - p, q / 2, prec + extra); arb_sub_ui(c, c, 1, prec + extra); arb_neg(c, c); } arb_mul_2exp_si(c, c, -1); arb_sqrt(c, c, prec); } else { /* compute root of the minimal polynomial */ slong start_prec, eval_extra_prec; fmpz_poly_t poly; arb_poly_t fpoly; arf_t interval_bound; arb_t interval; arf_init(interval_bound); arb_init(interval); fmpz_poly_init(poly); arb_poly_init(fpoly); if (p % 2 == 0) arb_fmpz_poly_cos_minpoly(poly, q); else arb_fmpz_poly_cos_minpoly(poly, 2 * q); eval_extra_prec = fmpz_poly_max_bits(poly) * 2; /* heuristic */ eval_extra_prec = FLINT_ABS(eval_extra_prec); arb_poly_set_fmpz_poly(fpoly, poly, ARF_PREC_EXACT); /* todo: smallify for accuracy */ start_prec = 100 + eval_extra_prec; arb_const_pi(c, start_prec); arb_mul_ui(c, c, p, start_prec); arb_div_ui(c, c, q, start_prec); arb_cos(c, c, start_prec); arb_mul_2exp_si(c, c, 1); /* poly is for 2*cos */ if (100 + eval_extra_prec - 10 < prec) { arb_set(interval, c); mag_mul_2exp_si(arb_radref(interval), arb_radref(interval), 1); _arb_poly_newton_convergence_factor(interval_bound, fpoly->coeffs, fpoly->length, interval, start_prec); _arb_poly_newton_refine_root(c, fpoly->coeffs, fpoly->length, c, interval, interval_bound, eval_extra_prec, prec); } arb_mul_2exp_si(c, c, -1); fmpz_poly_clear(poly); arb_poly_clear(fpoly); arf_clear(interval_bound); arb_clear(interval); } } void _arb_sin_pi_fmpq_algebraic(arb_t s, ulong p, ulong q, slong prec) { if (q % 2 == 0) { p = q / 2 - p; while ((p % 2 == 0) && (q % 2 == 0)) { p /= 2; q /= 2; } _arb_cos_pi_fmpq_algebraic(s, p, q, prec); } else { _arb_cos_pi_fmpq_algebraic(s, q - 2 * p, 2 * q, prec); } } void _arb_sin_cos_pi_fmpq_algebraic(arb_t s, arb_t c, ulong p, ulong q, slong prec) { slong wp; if (q <= 6) { if (p == 0) { arb_one(c); arb_zero(s); return; } else if (q == 2) /* p/q must be 1/2 */ { arb_zero(c); arb_one(s); return; } else if (q == 4) /* p/q must be 1/4 */ { arb_sqrt_ui(c, 2, prec); arb_mul_2exp_si(c, c, -1); arb_set(s, c); return; } } wp = prec + 3; /* prefer the formula with less cancellation */ if (p <= q / 4) { _arb_sin_pi_fmpq_algebraic(s, p, q, wp); arb_mul(c, s, s, wp); arb_sub_ui(c, c, 1, wp); arb_neg(c, c); arb_sqrt(c, c, prec); } else { _arb_cos_pi_fmpq_algebraic(c, p, q, wp); arb_mul(s, c, c, wp); arb_sub_ui(s, s, 1, wp); arb_neg(s, s); arb_sqrt(s, s, prec); } }