/* Copyright (C) 2017 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "arb_fmpz_poly.h" #include "acb_dirichlet.h" void arb_fmpz_poly_gauss_period_minpoly(fmpz_poly_t res, ulong q, ulong n) { ulong k, d, e, g, gk, qinv; ulong * es; slong prec, initial_prec; int done, real; if (n == 0 || !n_is_prime(q) || ((q - 1) % n) != 0 || n_gcd_full(n, (q - 1) / n) != 1) { fmpz_poly_zero(res); return; } d = (q - 1) / n; /* this is much faster */ if (d == 1) { fmpz_poly_cyclotomic(res, q); return; } g = n_primitive_root_prime(q); qinv = n_preinvert_limb(q); es = flint_malloc(sizeof(ulong) * d); for (e = 0; e < d; e++) es[e] = n_powmod2(g, n * e, q); /* either all roots are real, or all roots are complex */ real = (n % 2) == 1; /* first estimate precision crudely based on d and n */ initial_prec = n * log(2 * d) * 1.4426950408889 * 1.03 + 20; initial_prec = FLINT_MAX(initial_prec, 48); /* if high, start lower to get a good estimate */ if (initial_prec > 200) initial_prec = 48; for (prec = initial_prec, done = 0; !done; ) { acb_dirichlet_roots_t zeta; arb_poly_t pz; arb_ptr roots; acb_ptr croots; acb_t t, u; arb_t v; acb_dirichlet_roots_init(zeta, q, (n * d) / 2, prec); roots = _arb_vec_init(n); croots = (acb_ptr) roots; acb_init(t); if (!real) acb_init(u); else arb_init(v); arb_poly_init(pz); for (k = 0; k < (real ? n : n / 2); k++) { gk = n_powmod2(g, k, q); if (real) { arb_zero(v); for (e = 0; e < d / 2; e++) { acb_dirichlet_root(t, zeta, n_mulmod2_preinv(gk, es[e], q, qinv), prec); arb_add(v, v, acb_realref(t), prec); } arb_mul_2exp_si(v, v, 1); /* compute conjugates */ arb_set(roots + k, v); } else { acb_zero(u); for (e = 0; e < d; e++) { acb_dirichlet_root(t, zeta, n_mulmod2_preinv(gk, es[e], q, qinv), prec); acb_add(u, u, t, prec); } if (arb_contains_zero(acb_imagref(u))) { /* todo: could increase precision */ flint_printf("fail! imaginary part should be nonzero\n"); flint_abort(); } else { acb_set(croots + k, u); } } } if (real) arb_poly_product_roots(pz, roots, n, prec); else arb_poly_product_roots_complex(pz, NULL, 0, croots, n / 2, prec); done = arb_poly_get_unique_fmpz_poly(res, pz); if (!done && prec == initial_prec) { mag_t m, mmax; mag_init(m); mag_init(mmax); for (k = 0; k < n; k++) { arb_get_mag(m, pz->coeffs + k); mag_max(mmax, mmax, m); } prec = mag_get_d_log2_approx(mmax) * 1.03 + 20; if (prec < 2 * initial_prec) prec = 2 * initial_prec; mag_clear(m); mag_clear(mmax); } else if (!done) { prec *= 2; } acb_dirichlet_roots_clear(zeta); _arb_vec_clear(roots, n); acb_clear(t); if (!real) acb_clear(u); else arb_clear(v); arb_poly_clear(pz); } flint_free(es); }