/* Copyright (C) 2017 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "arb_hypgeom.h" #include "bernoulli.h" static const unsigned int central_bin_tab[] = { 1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, 184756, 705432, 2704156, 10400600, 40116600, 155117520, 601080390, 2333606220U, }; void arb_gamma_stirling_coeff(arb_t b, ulong k, int digamma, slong prec); /* See Richard P. Brent, "Asymptotic approximation of central binomial coefficients with rigorous error bounds". https://arxiv.org/abs/1608.04834 */ static void arb_hypgeom_central_bin_ui_asymp(arb_t res, ulong n, slong prec) { arb_t s, t, u; fmpz_t n2; slong j, k, term_prec, wp; double term_mag, n2_mag; mag_t err, err2; arb_init(s); arb_init(t); arb_init(u); fmpz_init(n2); mag_init(err); mag_init(err2); wp = prec + 8; n2_mag = log(n) * 1.44269504088896; for (k = 1; k < prec; k++) { term_mag = bernoulli_bound_2exp_si(2 * k + 2) - (2 * k + 1) * n2_mag; term_mag -= (FLINT_BIT_COUNT((k + 1)*(2*k+1)) - 1); if (term_mag < -wp) break; } wp += 2 * FLINT_BIT_COUNT(k); BERNOULLI_ENSURE_CACHED(2*k) fmpz_set_ui(n2, n); fmpz_mul_ui(n2, n2, n); n2_mag *= 2; for (j = 0; j <= k - 1; j++) { term_mag = bernoulli_bound_2exp_si(2 * j + 2); term_mag -= j * n2_mag; term_prec = wp + term_mag; term_prec = FLINT_MIN(term_prec, wp); term_prec = FLINT_MAX(term_prec, 10); arb_gamma_stirling_coeff(t, j + 1, 0, term_prec); arb_mul_2exp_si(u, t, -2*j - 2); arb_sub(t, u, t, term_prec); arb_mul_2exp_si(t, t, 1); arb_addmul_fmpz(t, s, n2, wp); arb_swap(s, t); } arb_set_fmpz(t, n2); arb_pow_ui(t, t, k - 1, wp); arb_mul_ui(t, t, n, wp); arb_div(s, s, t, wp); /* error term: bernoulli(2k+2) / ((k+1)(2k+1)) / n^(2k+1) */ mag_bernoulli_div_fac_ui(err, 2 * k + 2); mag_fac_ui(err2, 2 * k + 2); mag_mul(err, err, err2); mag_set_ui_lower(err2, n); mag_pow_ui_lower(err2, err2, 2 * k + 1); mag_mul_ui_lower(err2, err2, k + 1); mag_div(err, err, err2); arb_add_error_mag(s, err); arb_exp(s, s, wp); arb_const_pi(t, wp); arb_mul_ui(t, t, n, wp); arb_rsqrt(t, t, wp); arb_mul(res, s, t, prec); fmpz_set_ui(n2, n); fmpz_mul_2exp(n2, n2, 1); arb_mul_2exp_fmpz(res, res, n2); arb_clear(s); arb_clear(t); arb_clear(u); fmpz_clear(n2); mag_clear(err); mag_clear(err2); } void arb_hypgeom_central_bin_ui(arb_t res, ulong n, slong prec) { if (n <= 17) { arb_set_ui(res, central_bin_tab[n]); arb_set_round(res, res, prec); } else if (n < 6.0 * prec + 200.0) { fmpz_t t; fmpz_init(t); fmpz_bin_uiui(t, 2 * n, n); arb_set_round_fmpz(res, t, prec); fmpz_clear(t); } else { arb_hypgeom_central_bin_ui_asymp(res, n, prec); } }